These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31611587)

  • 21. Pulsed electric fields accelerate release of mannoproteins from Saccharomyces cerevisiae during aging on the lees of Chardonnay wine.
    Martínez JM; Delso C; Maza MA; Álvarez I; Raso J
    Food Res Int; 2019 Feb; 116():795-801. PubMed ID: 30717010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passive penetration of nitrate through the plasma membrane of Paracoccus denitrificans and its potentiation by the lipophilic tetraphenylphosphonium cation.
    Kucera I
    Biochim Biophys Acta; 2003 Mar; 1557(1-3):119-24. PubMed ID: 12615355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].
    Zhang Y; Zeng XA; Wen QB; Li L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):156-60. PubMed ID: 18422142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields.
    El Zakhem H; Lanoisellé JL; Lebovka NI; Nonus M; Vorobiev E
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):189-97. PubMed ID: 16427256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age and growth-related changes in cyclopiazonic acid-potentiated lipophilic cation accumulation by cultured cells and binding to freeze-thaw lysed cells.
    Riley RT; Goeger DE; Norred WP; Cole RJ; Dorner JW
    J Biochem Toxicol; 1987; 2():251-64. PubMed ID: 3508477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.
    Francois JM
    Adv Exp Med Biol; 2016; 892():11-31. PubMed ID: 26721269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat-Assisted Pulsed Electric Field Treatment for the Inactivation of
    Montanari C; Tylewicz U; Tabanelli G; Berardinelli A; Rocculi P; Ragni L; Gardini F
    Front Microbiol; 2019; 10():1737. PubMed ID: 31417527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tetraphenylphosphonium as a novel molecular probe for imaging tumors.
    Min JJ; Biswal S; Deroose C; Gambhir SS
    J Nucl Med; 2004 Apr; 45(4):636-43. PubMed ID: 15073261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsed Electric Field (PEF) Enhances Iron Uptake by the Yeast
    Nowosad K; Sujka M; Pankiewicz U; Miklavčič D; Arczewska M
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae.
    Pankiewicz U; Jamroz J
    J Microbiol Biotechnol; 2007 Jul; 17(7):1139-46. PubMed ID: 18051325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial cytoplasmic membrane permeability assay using ion-selective electrodes.
    Ohmizo C; Yata M; Katsu T
    J Microbiol Methods; 2004 Nov; 59(2):173-9. PubMed ID: 15369853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae.
    De Nobel JG; Klis FM; Ram A; Van Unen H; Priem J; Munnik T; Van Den Ende H
    Yeast; 1991; 7(6):589-98. PubMed ID: 1722597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of inactivation of Candida humilis and Saccharomyces cerevisiae by pulsed electric fields.
    Ou QX; Nikolic-Jaric M; Gänzle M
    Bioelectrochemistry; 2017 Jun; 115():47-55. PubMed ID: 28063751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method of determining electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H445-52. PubMed ID: 8368347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small lipid-soluble cations are not membrane voltage probes for Neurospora or Saccharomyces.
    Ballarin-Denti A; Slayman CL; Kuroda H
    Biochim Biophys Acta; 1994 Feb; 1190(1):43-56. PubMed ID: 8110820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced in vitro uptake and retention of 3H-tetraphenylphosphonium by nervous system tumor cells.
    Steichen JD; Weiss MJ; Elmaleh DR; Martuza RL
    J Neurosurg; 1991 Jan; 74(1):116-22. PubMed ID: 1984490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake.
    Liu X; Li J; Zhao H; Liu B; Günther-Pomorski T; Chen S; Liesche J
    J Cell Biol; 2019 Apr; 218(4):1408-1421. PubMed ID: 30782779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.
    Kennedy SM; Aiken EJ; Beres KA; Hahn AR; Kamin SJ; Hagness SC; Booske JH; Murphy WL
    PLoS One; 2014; 9(3):e92528. PubMed ID: 24671150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcein Release from Cells In Vitro via Reversible and Irreversible Electroporation.
    Rajeckaitė V; Jakštys B; Rafanavičius A; Maciulevičius M; Jakutavičiūtė M; Šatkauskas S
    J Membr Biol; 2018 Feb; 251(1):119-130. PubMed ID: 29143077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.