These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31611709)

  • 1. The Stability Principle and global weak solutions of the free surface semi-geostrophic equations in geostrophic coordinates.
    Cullen MJP; Kuna T; Pelloni B; Wilkinson M
    Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20180787. PubMed ID: 31611709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime.
    Hardy CM; Livermore PW; Niesen J; Luo J; Li K
    Proc Math Phys Eng Sci; 2018 Oct; 474(2218):20180412. PubMed ID: 30839837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the geometry of solutions of the quasi-geostrophic and Euler equations.
    Cordoba D
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12769-70. PubMed ID: 11038595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of several two-dimensional fluid equations in singular scenarios.
    Cordoba D; Fefferman C
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4311-2. PubMed ID: 11274348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precessing cylinders at the second and third resonance: turbulence controlled by geostrophic flow.
    Jiang J; Kong D; Zhu R; Zhang K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033007. PubMed ID: 26465556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data assimilation on the exponentially accurate slow manifold.
    Cotter C
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120300. PubMed ID: 23588050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic generation of submesoscale centrifugal instability and energy dissipation.
    Gula J; Molemaker MJ; McWilliams JC
    Nat Commun; 2016 Sep; 7():12811. PubMed ID: 27681822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and transport properties of three surface quasigeostrophic point vortices.
    Taylor CK; Llewellyn Smith SG
    Chaos; 2016 Nov; 26(11):113117. PubMed ID: 27908018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global solutions of aggregation equations and other flows with random diffusion.
    Rosenzweig M; Staffilani G
    Probab Theory Relat Fields; 2023; 185(3-4):1219-1262. PubMed ID: 36969725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Almost sharp fronts for the surface quasi-geostrophic equation.
    Córdoba D; Fefferman C; Rodrigo JL
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2687-91. PubMed ID: 14978276
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Bardos CW; Titi ES
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210073. PubMed ID: 35034497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On a modified form of navier-stokes equations for three-dimensional flows.
    Venetis J
    ScientificWorldJournal; 2015; 2015():692494. PubMed ID: 25918743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Complete Formula of Ocean Surface Absolute Geostrophic Current.
    Chu PC
    Sci Rep; 2020 Jan; 10(1):1445. PubMed ID: 31996755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Geostrophic Kinetic Energy on the Distribution of Mesopelagic Fish Larvae in the Southern Gulf of California in Summer/Fall Stratified Seasons.
    Contreras-Catala F; Sánchez-Velasco L; Beier E; Godínez VM; Barton ED; Santamaría-Del-Angel E
    PLoS One; 2016; 11(10):e0164900. PubMed ID: 27760185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Weak Rigidity of the Gauss-Codazzi-Ricci Equations and Isometric Immersions of Riemannian Manifolds with Lower Regularity.
    Chen GG; Li S
    J Geom Anal; 2018; 28(3):1957-2007. PubMed ID: 30839883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An elementary proof of existence and uniqueness for the Euler flow in localized Yudovich spaces.
    Crippa G; Stefani G
    Calc Var Partial Differ Equ; 2024; 63(7):168. PubMed ID: 38975570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Technical Critique of Some Parts of the Free Energy Principle.
    Biehl M; Pollock FA; Kanai R
    Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33673663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.
    Gancedo F; Strain RM
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):635-9. PubMed ID: 24347645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum enstrophy principle for two-dimensional inviscid flows around obstacles.
    Muller F; Burbeau A; Gréa BJ; Sagaut P
    Phys Rev E; 2019 Feb; 99(2-1):023105. PubMed ID: 30934294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions.
    Hohn ME; Li B; Yang W
    J Math Anal Appl; 2015 May; 425(1):212-233. PubMed ID: 25601722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.