These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31611732)

  • 1. Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy.
    El-Hachem M; McCue SW; Jin W; Du Y; Simpson MJ
    Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190378. PubMed ID: 31611732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model.
    El-Hachem M; McCue SW; Simpson MJ
    Math Med Biol; 2022 Sep; 39(3):226-250. PubMed ID: 35818827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invading and Receding Sharp-Fronted Travelling Waves.
    El-Hachem M; McCue SW; Simpson MJ
    Bull Math Biol; 2021 Feb; 83(4):35. PubMed ID: 33611673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fisher-KPP Model with a Nonlocal Weighted Free Boundary: Analysis of How Habitat Boundaries Expand, Balance or Shrink.
    Feng C; Lewis MA; Wang C; Wang H
    Bull Math Biol; 2022 Jan; 84(3):34. PubMed ID: 35084578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite flame thickness effects on Kolmogorov-Petrovsky-Piskunov turbulent burning velocities.
    Somappa S; Acharya V; Lieuwen T
    Phys Rev E; 2022 Nov; 106(5-2):055107. PubMed ID: 36559363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Existence of Traveling Waves for the Generalized F-KPP Equation.
    Kollár R; Novak S
    Bull Math Biol; 2017 Mar; 79(3):525-559. PubMed ID: 28008475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting Fisher-KPP model to interpret the spatial spreading of invasive cell population in biology.
    Paul GC; Tauhida ; Kumar D
    Heliyon; 2022 Oct; 8(10):e10773. PubMed ID: 36217488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Continuum Mathematical Model of Substrate-Mediated Tissue Growth.
    El-Hachem M; McCue SW; Simpson MJ
    Bull Math Biol; 2022 Mar; 84(4):49. PubMed ID: 35237899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the nonlinear dispersive coefficient on time-dependent variable coefficient soliton solutions of the Kolmogorov-Petrovsky-Piskunov model arising in biological and chemical science.
    Roshid MM; Rahman MM; Or-Roshid H
    Heliyon; 2024 Jun; 10(11):e31294. PubMed ID: 38845949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speed of invasion of an expanding population by a horizontally transmitted trait.
    Venegas-Ortiz J; Allen RJ; Evans MR
    Genetics; 2014 Feb; 196(2):497-507. PubMed ID: 24298062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations.
    Angstmann CN; Henry BI
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric scaling as traveling waves.
    Munier S; Peschanski R
    Phys Rev Lett; 2003 Dec; 91(23):232001. PubMed ID: 14683173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Travelling waves for a velocity-jump model of cell migration and proliferation.
    Simpson MJ; Foy BH; McCue SW
    Math Biosci; 2013 Aug; 244(2):98-106. PubMed ID: 23665453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling of spatiotemporal patterns formed at a traveling reaction front.
    Yakupov EO; Gubernov VV; Polezhaev AA
    Chaos; 2020 Aug; 30(8):083147. PubMed ID: 32872825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invasions Slow Down or Collapse in the Presence of Reactive Boundaries.
    Minors K; Dawes JHP
    Bull Math Biol; 2017 Oct; 79(10):2197-2214. PubMed ID: 28766158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach.
    Harko T; Mak MK
    Math Biosci Eng; 2015 Feb; 12(1):41-69. PubMed ID: 25811333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Travelling wave analysis of a mathematical model of glioblastoma growth.
    Gerlee P; Nelander S
    Math Biosci; 2016 Jun; 276():75-81. PubMed ID: 27021919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Master equation for a chemical wave front with perturbation of local equilibrium.
    Dziekan P; Lemarchand A; Nowakowski B
    J Chem Phys; 2011 Aug; 135(8):084123. PubMed ID: 21895175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter identifiability and model selection for partial differential equation models of cell invasion.
    Liu Y; Suh K; Maini PK; Cohen DJ; Baker RE
    J R Soc Interface; 2024 Mar; 21(212):20230607. PubMed ID: 38442862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the optimal coefficient of the spatially periodic Fisher-KPP equation that minimizes the spreading speed.
    Ito R
    J Math Biol; 2020 May; 80(6):1953-1970. PubMed ID: 32211951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.