BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31612244)

  • 1. Role of Lipid Composition in the Interaction and Activity of the Antimicrobial Compound Fengycin with Complex Membrane Models.
    Mantil E; Buznytska I; Daly G; Ianoul A; Avis TJ
    J Membr Biol; 2019 Dec; 252(6):627-638. PubMed ID: 31612244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin.
    Mantil E; Crippin T; Avis TJ
    Colloids Surf B Biointerfaces; 2019 Jun; 178():94-102. PubMed ID: 30844565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain redistribution within ergosterol-containing model membranes in the presence of the antimicrobial compound fengycin.
    Mantil E; Crippin T; Avis TJ
    Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):738-747. PubMed ID: 30639286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular Lipid Composition Affects Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by Bacillus subtilis Strain CU12.
    Wise C; Falardeau J; Hagberg I; Avis TJ
    Phytopathology; 2014 Oct; 104(10):1036-41. PubMed ID: 24679152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes.
    Deleu M; Paquot M; Nylander T
    Biophys J; 2008 Apr; 94(7):2667-79. PubMed ID: 18178659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics.
    Horn JN; Cravens A; Grossfield A
    Biophys J; 2013 Oct; 105(7):1612-23. PubMed ID: 24094402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis.
    Fiedler S; Heerklotz H
    Biophys J; 2015 Nov; 109(10):2079-89. PubMed ID: 26588567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation.
    Zhang L; Sun C
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cholesterol on the mechanism of fengycin, a biofungicide.
    Sur S; Grossfield A
    Biophys J; 2022 May; 121(10):1963-1974. PubMed ID: 35422413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes.
    González-Jaramillo LM; Aranda FJ; Teruel JA; Villegas-Escobar V; Ortiz A
    Colloids Surf B Biointerfaces; 2017 Aug; 156():114-122. PubMed ID: 28527355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics.
    Sur S; Romo TD; Grossfield A
    J Phys Chem B; 2018 Mar; 122(8):2219-2226. PubMed ID: 29376372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes.
    Deleu M; Paquot M; Nylander T
    J Colloid Interface Sci; 2005 Mar; 283(2):358-65. PubMed ID: 15721905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713.
    Patel H; Tscheka C; Edwards K; Karlsson G; Heerklotz H
    Biochim Biophys Acta; 2011 Aug; 1808(8):2000-8. PubMed ID: 21545788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins.
    Pathak KV; Keharia H; Gupta K; Thakur SS; Balaram P
    J Am Soc Mass Spectrom; 2012 Oct; 23(10):1716-28. PubMed ID: 22847390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cholesterol and fatty acids on the molecular interactions of fengycin with Stratum corneum mimicking lipid monolayers.
    Eeman M; Francius G; Dufrêne YF; Nott K; Paquot M; Deleu M
    Langmuir; 2009 Mar; 25(5):3029-39. PubMed ID: 19437771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease.
    Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P
    Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cyclic lipopeptides produced by Bacillus vallismortis R2 and their antifungal activity against Alternaria alternata.
    Kaur PK; Joshi N; Singh IP; Saini HS
    J Appl Microbiol; 2017 Jan; 122(1):139-152. PubMed ID: 27665751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of ergosterol on the action of the hop oil and its major terpenes on model fungi membranes. Towards understanding the mechanism of action of phytocompounds for food and plant protection.
    Połeć K; Olechowska K; Klejdysz A; Dymek M; Rachwalik R; Sikora E; Hąc-Wydro K
    Chem Phys Lipids; 2021 Aug; 238():105092. PubMed ID: 34000279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the distinct biocontrol activities of lipopeptides fengycin and surfactin through their differential impact on lipid membranes.
    Gilliard G; Demortier T; Boubsi F; Jijakli MH; Ongena M; De Clerck C; Deleu M
    Colloids Surf B Biointerfaces; 2024 Jul; 239():113933. PubMed ID: 38729019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.