These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 31612455)

  • 1. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients.
    Moarefian M; Davalos RV; Burton MD; Jones CN
    Front Immunol; 2021; 12():674727. PubMed ID: 34421891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for studying chemotaxis and electrotaxis.
    Li J; Lin F
    Trends Cell Biol; 2011 Aug; 21(8):489-97. PubMed ID: 21665472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in microfluidics-based chemotaxis studies.
    Wu J; Wu X; Lin F
    Lab Chip; 2013 Jul; 13(13):2484-99. PubMed ID: 23712326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit.
    Spuul P; Chi PY; Billottet C; Chou CF; Génot E
    Methods; 2016 Feb; 94():65-74. PubMed ID: 26342258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a microfluidic device for studying the combinatorial effect of physical and chemical cues on cell migration.
    Saxena N; Jadhav S; Sen S
    STAR Protoc; 2021 Mar; 2(1):100310. PubMed ID: 33554144
    [No Abstract]   [Full Text] [Related]  

  • 8. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement.
    Sala F; Ficorella C; Osellame R; Käs JA; Martínez Vázquez R
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and Use of a Microfluidic Device to Study Cell Migration in Confined Environments.
    Keys J; Windsor A; Lammerding J
    Methods Mol Biol; 2018; 1840():101-118. PubMed ID: 30141042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrotaxis Studies of Lung Cancer Cells using a Multichannel Dual-electric-field Microfluidic Chip.
    Hou HS; Chang HF; Cheng JY
    J Vis Exp; 2015 Dec; (106):e53340. PubMed ID: 26780080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic devices for neutrophil chemotaxis studies.
    Zhao W; Zhao H; Li M; Huang C
    J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.
    Zhao S; Zhu K; Zhang Y; Zhu Z; Xu Z; Zhao M; Pan T
    Lab Chip; 2014 Nov; 14(22):4398-405. PubMed ID: 25242672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell migration microfluidics for electrotaxis-based heterogeneity study of lung cancer cells.
    Li Y; Xu T; Zou H; Chen X; Sun D; Yang M
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):837-845. PubMed ID: 27816579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm.
    Ko YJ; Maeng JH; Hwang SY; Ahn Y
    SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics.
    Ye S; Cao Q; Ni P; Xiong S; Zhong M; Yuan T; Shan J; Liang J; Fan Y; Zhang X
    Small; 2023 Oct; 19(40):e2302152. PubMed ID: 37282789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-scale microfluidics to study 3D chemotaxis at the single cell level.
    Frick C; Dettinger P; Renkawitz J; Jauch A; Berger CT; Recher M; Schroeder T; Mehling M
    PLoS One; 2018; 13(6):e0198330. PubMed ID: 29879160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly and Use of a Microfluidic Device to Study Nuclear Mechanobiology During Confined Migration.
    Agrawal R; Windsor A; Lammerding J
    Methods Mol Biol; 2022; 2502():329-349. PubMed ID: 35412249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices.
    Li J; Nandagopal S; Wu D; Romanuik SF; Paul K; Thomson DJ; Lin F
    Lab Chip; 2011 Apr; 11(7):1298-304. PubMed ID: 21327249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.