These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31612545)

  • 1. Global sensitivity analysis of skeletal muscle dMRI metrics: Effects of microstructural and pulse parameters.
    Naughton NM; Georgiadis JG
    Magn Reson Med; 2020 Apr; 83(4):1458-1470. PubMed ID: 31612545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle.
    Naughton NM; Georgiadis JG
    Phys Med Biol; 2019 Aug; 64(15):155004. PubMed ID: 31212260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla.
    Rahman N; Xu K; Omer M; Budde MD; Brown A; Baron CA
    PLoS One; 2021; 16(11):e0255711. PubMed ID: 34739479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal.
    Li JR; Nguyen HT; Nguyen DV; Haddar H; Coatléven J; Le Bihan D
    J Magn Reson; 2014 Nov; 248():54-65. PubMed ID: 25314082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion.
    Ning L; Özarslan E; Westin CF; Rathi Y
    Neuroimage; 2017 Feb; 146():452-473. PubMed ID: 27751940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between tissue microstructure and the diffusion tensor in simulated skeletal muscle.
    Berry DB; Regner B; Galinsky V; Ward SR; Frank LR
    Magn Reson Med; 2018 Jul; 80(1):317-329. PubMed ID: 29090480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction.
    Beck D; de Lange AG; Maximov II; Richard G; Andreassen OA; Nordvik JE; Westlye LT
    Neuroimage; 2021 Jan; 224():117441. PubMed ID: 33039618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter estimation using macroscopic diffusion MRI signal models.
    Nguyen HT; Grebenkov D; Van Nguyen D; Poupon C; Le Bihan D; Li JR
    Phys Med Biol; 2015 Apr; 60(8):3389-413. PubMed ID: 25831194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann method for simulation of diffusion magnetic resonance imaging physics in multiphase tissue models.
    Naughton NM; Tennyson CG; Georgiadis JG
    Phys Rev E; 2020 Oct; 102(4-1):043305. PubMed ID: 33212689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histological validation of per-bundle water diffusion metrics within a region of fiber crossing following axonal degeneration.
    Rojas-Vite G; Coronado-Leija R; Narvaez-Delgado O; Ramírez-Manzanares A; Marroquín JL; Noguez-Imm R; Aranda ML; Scherrer B; Larriva-Sahd J; Concha L
    Neuroimage; 2019 Nov; 201():116013. PubMed ID: 31326575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.
    Eichner C; Cauley SF; Cohen-Adad J; Möller HE; Turner R; Setsompop K; Wald LL
    Neuroimage; 2015 Nov; 122():373-84. PubMed ID: 26241680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
    Yu Q; Reutens D; Vegh V
    Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model.
    Figini M; Scotti A; Marcuzzo S; Bonanno S; Padelli F; Moreno-Manzano V; García-Verdugo JM; Bernasconi P; Mantegazza R; Bruzzone MG; Zucca I
    PLoS One; 2016; 11(8):e0161646. PubMed ID: 27560686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion time dependency of extracellular diffusion.
    Xu J; Xie J; Semmineh NB; Devan SP; Jiang X; Gore JC
    Magn Reson Med; 2023 Jun; 89(6):2432-2440. PubMed ID: 36740894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI.
    Wu D; Liu D; Hsu YC; Li H; Sun Y; Qin Q; Zhang Y
    Magn Reson Med; 2021 Jan; 85(1):78-88. PubMed ID: 32643240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivities of statistical distribution model and diffusion kurtosis model in varying microstructural environments: a Monte Carlo study.
    Lee CY; Bennett KM; Debbins JP
    J Magn Reson; 2013 May; 230():19-26. PubMed ID: 23428968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.
    Zucchelli M; Brusini L; Andrés Méndez C; Daducci A; Granziera C; Menegaz G
    Med Image Anal; 2016 Aug; 32():145-56. PubMed ID: 27086167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice.
    Winters KV; Reynaud O; Novikov DS; Fieremans E; Kim SG
    Magn Reson Med; 2018 Nov; 80(5):2094-2108. PubMed ID: 29577406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping.
    Zhang H; Liu K; Ba R; Zhang Z; Zhang Y; Chen Y; Gu W; Shen Z; Shu Q; Fu J; Wu D
    Neuro Oncol; 2023 Jun; 25(6):1146-1156. PubMed ID: 36617263
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Berry DB; You S; Warner J; Frank LR; Chen S; Ward SR
    Tissue Eng Part A; 2017 Sep; 23(17-18):980-988. PubMed ID: 28338417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.