BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31612739)

  • 21. Radotinib inhibits acute myeloid leukemia cell proliferation via induction of mitochondrial-dependent apoptosis and CDK inhibitors.
    Heo SK; Noh EK; Gwon GD; Kim JY; Jo JC; Choi Y; Koh S; Baek JH; Min YJ; Kim H
    Eur J Pharmacol; 2016 Oct; 789():280-290. PubMed ID: 27477352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell cycle inhibitors for the treatment of acute myeloid leukemia: a review of phase 2 & 3 clinical trials.
    Jammal N; Rausch CR; Kadia TM; Pemmaraju N
    Expert Opin Emerg Drugs; 2020 Dec; 25(4):491-499. PubMed ID: 33161749
    [No Abstract]   [Full Text] [Related]  

  • 23. Icariside II induces cell cycle arrest and differentiation via TLR8/MyD88/p38 pathway in acute myeloid leukemia cells.
    Yang J; Lan J; Du H; Zhang X; Li A; Zhang X; Liu Y; Zhang J; Zhang C; Ding Y; Zhang T
    Eur J Pharmacol; 2019 Mar; 846():12-22. PubMed ID: 30579933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib.
    Kwapisz D
    Breast Cancer Res Treat; 2017 Nov; 166(1):41-54. PubMed ID: 28741274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia.
    Tabe Y; Tafuri A; Sekihara K; Yang H; Konopleva M
    Expert Opin Ther Targets; 2017 Jul; 21(7):705-714. PubMed ID: 28537457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small Molecules Co-targeting CKIα and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models.
    Minzel W; Venkatachalam A; Fink A; Hung E; Brachya G; Burstain I; Shaham M; Rivlin A; Omer I; Zinger A; Elias S; Winter E; Erdman PE; Sullivan RW; Fung L; Mercurio F; Li D; Vacca J; Kaushansky N; Shlush L; Oren M; Levine R; Pikarsky E; Snir-Alkalay I; Ben-Neriah Y
    Cell; 2018 Sep; 175(1):171-185.e25. PubMed ID: 30146162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia.
    Yeh YY; Chen R; Hessler J; Mahoney E; Lehman AM; Heerema NA; Grever MR; Plunkett W; Byrd JC; Johnson AJ
    Oncotarget; 2015 Feb; 6(5):2667-79. PubMed ID: 25596730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and optimization of selective and potent CDK9 inhibitors with flavonoid scaffold for the treatment of acute myeloid leukemia.
    Wu T; Yu B; Gong W; Zhang J; Yu S; Tian Y; Zhao T; Li Z; Wang J; Bian J
    Eur J Med Chem; 2023 Nov; 259():115711. PubMed ID: 37572539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CDK6 Inhibition: A Novel Approach in AML Management.
    Uras IZ; Sexl V; Kollmann K
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting AraC-Resistant Acute Myeloid Leukemia by Dual Inhibition of CDK9 and Bcl-2: A Systematic Review and Meta-Analysis.
    Li L; Han C; Yu X; Shen J; Cao Y
    J Healthc Eng; 2022; 2022():2842066. PubMed ID: 35126914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia.
    Lopez S; Voisset E; Tisserand JC; Mosca C; Prebet T; Santamaria D; Dubreuil P; De Sepulveda P
    Oncotarget; 2016 Aug; 7(32):51163-51173. PubMed ID: 27323399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade.
    Yuan T; Qi B; Jiang Z; Dong W; Zhong L; Bai L; Tong R; Yu J; Shi J
    Eur J Med Chem; 2019 Sep; 178():468-483. PubMed ID: 31207462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies.
    Bose P; Simmons GL; Grant S
    Expert Opin Investig Drugs; 2013 Jun; 22(6):723-38. PubMed ID: 23647051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational Design and Development of Novel CDK9 Inhibitors for the Treatment of Acute Myeloid Leukemia.
    Han X; Song N; Saidahmatov A; Wang P; Wang Y; Hu X; Kan W; Zhu W; Gao L; Zeng M; Wang Y; Li C; Li J; Liu H; Zhou Y; Wang J
    J Med Chem; 2021 Oct; 64(19):14647-14663. PubMed ID: 34477384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Future of Targeting FLT3 Activation in AML.
    Leick MB; Levis MJ
    Curr Hematol Malig Rep; 2017 Jun; 12(3):153-167. PubMed ID: 28421420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism.
    Saxena K; Konopleva M
    Expert Opin Investig Drugs; 2020 Sep; 29(9):973-988. PubMed ID: 32746655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors.
    Bisi JE; Sorrentino JA; Jordan JL; Darr DD; Roberts PJ; Tavares FX; Strum JC
    Oncotarget; 2017 Jun; 8(26):42343-42358. PubMed ID: 28418845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The clinical development of FLT3 inhibitors in acute myeloid leukemia.
    Knapper S
    Expert Opin Investig Drugs; 2011 Oct; 20(10):1377-95. PubMed ID: 21895538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Midostaurin/PKC412 for the treatment of newly diagnosed FLT3 mutation-positive acute myeloid leukemia.
    Luskin MR; DeAngelo DJ
    Expert Rev Hematol; 2017 Dec; 10(12):1033-1045. PubMed ID: 29069942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The combination of FLT3 and DNA methyltransferase inhibition is synergistically cytotoxic to FLT3/ITD acute myeloid leukemia cells.
    Chang E; Ganguly S; Rajkhowa T; Gocke CD; Levis M; Konig H
    Leukemia; 2016 May; 30(5):1025-32. PubMed ID: 26686245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.