These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31612759)
1. Validation and comparison of two automated methods for quantifying brain white matter hyperintensities of presumed vascular origin. Waymont JMJ; Petsa C; McNeil CJ; Murray AD; Waiter GD J Int Med Res; 2020 Feb; 48(2):300060519880053. PubMed ID: 31612759 [TBL] [Abstract][Full Text] [Related]
2. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects. Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M; Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744 [TBL] [Abstract][Full Text] [Related]
3. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study. Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450 [TBL] [Abstract][Full Text] [Related]
4. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging. Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699 [TBL] [Abstract][Full Text] [Related]
5. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images. Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826 [TBL] [Abstract][Full Text] [Related]
6. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities. Griffanti L; Zamboni G; Khan A; Li L; Bonifacio G; Sundaresan V; Schulz UG; Kuker W; Battaglini M; Rothwell PM; Jenkinson M Neuroimage; 2016 Nov; 141():191-205. PubMed ID: 27402600 [TBL] [Abstract][Full Text] [Related]
7. Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset. Heinen R; Steenwijk MD; Barkhof F; Biesbroek JM; van der Flier WM; Kuijf HJ; Prins ND; Vrenken H; Biessels GJ; de Bresser J; Sci Rep; 2019 Nov; 9(1):16742. PubMed ID: 31727919 [TBL] [Abstract][Full Text] [Related]
8. Performance evaluation of automated white matter hyperintensity segmentation algorithms in a multicenter cohort on cognitive impairment and dementia. Gaubert M; Dell'Orco A; Lange C; Garnier-Crussard A; Zimmermann I; Dyrba M; Duering M; Ziegler G; Peters O; Preis L; Priller J; Spruth EJ; Schneider A; Fliessbach K; Wiltfang J; Schott BH; Maier F; Glanz W; Buerger K; Janowitz D; Perneczky R; Rauchmann BS; Teipel S; Kilimann I; Laske C; Munk MH; Spottke A; Roy N; Dobisch L; Ewers M; Dechent P; Haynes JD; Scheffler K; Düzel E; Jessen F; Wirth M; Front Psychiatry; 2022; 13():1010273. PubMed ID: 36713907 [TBL] [Abstract][Full Text] [Related]
9. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T; Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002 [TBL] [Abstract][Full Text] [Related]
10. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation. Knight J; Taylor GW; Khademi A Magn Reson Imaging; 2018 Dec; 54():119-136. PubMed ID: 29932970 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of TrUE-Net in comparison to established white matter hyperintensity segmentation methods: An independent validation study. Strain JF; Rahmani M; Dierker D; Owen C; Jafri H; Vlassenko AG; Womack K; Fripp J; Tosun D; Benzinger TLS; Weiner M; Masters C; Lee JM; Morris JC; Goyal MS; Neuroimage; 2024 Jan; 285():120494. PubMed ID: 38086495 [TBL] [Abstract][Full Text] [Related]
12. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities. Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711 [TBL] [Abstract][Full Text] [Related]
13. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA. Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789 [TBL] [Abstract][Full Text] [Related]
14. Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding. Sundaresan V; Zamboni G; Le Heron C; Rothwell PM; Husain M; Battaglini M; De Stefano N; Jenkinson M; Griffanti L Neuroimage; 2019 Nov; 202():116056. PubMed ID: 31376518 [TBL] [Abstract][Full Text] [Related]
15. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features. Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263 [TBL] [Abstract][Full Text] [Related]
16. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. de Sitter A; Steenwijk MD; Ruet A; Versteeg A; Liu Y; van Schijndel RA; Pouwels PJW; Kilsdonk ID; Cover KS; van Dijk BW; Ropele S; Rocca MA; Yiannakas M; Wattjes MP; Damangir S; Frisoni GB; Sastre-Garriga J; Rovira A; Enzinger C; Filippi M; Frederiksen J; Ciccarelli O; Kappos L; Barkhof F; Vrenken H; Neuroimage; 2017 Dec; 163():106-114. PubMed ID: 28899746 [TBL] [Abstract][Full Text] [Related]
17. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Guerrero R; Qin C; Oktay O; Bowles C; Chen L; Joules R; Wolz R; Valdés-Hernández MC; Dickie DA; Wardlaw J; Rueckert D Neuroimage Clin; 2018; 17():918-934. PubMed ID: 29527496 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Training Sample Size on the Prediction of White Matter Hyperintensity Volume in a Healthy Population Using BIANCA. Wulms N; Redmann L; Herpertz C; Bonberg N; Berger K; Sundermann B; Minnerup H Front Aging Neurosci; 2021; 13():720636. PubMed ID: 35126084 [No Abstract] [Full Text] [Related]
19. Early detection of white matter hyperintensities using SHIVA-WMH detector. Tsuchida A; Boutinaud P; Verrecchia V; Tzourio C; Debette S; Joliot M Hum Brain Mapp; 2024 Jan; 45(1):e26548. PubMed ID: 38050769 [TBL] [Abstract][Full Text] [Related]
20. The effects of white matter disease on the accuracy of automated segmentation. Karim HT; Andreescu C; MacCloud RL; Butters MA; Reynolds CF; Aizenstein HJ; Tudorascu DL Psychiatry Res Neuroimaging; 2016 Jul; 253():7-14. PubMed ID: 27254085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]