These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31612890)

  • 21. Theory of skyrmions in bilayer systems.
    Koshibae W; Nagaosa N
    Sci Rep; 2017 Feb; 7():42645. PubMed ID: 28198436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical Thermodynamics of Chiral Skyrmions in a Ferromagnetic Material.
    Zivieri R
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spin structure relation to phase contrast imaging of isolated magnetic Bloch and Néel skyrmions.
    Pöllath S; Lin T; Lei N; Zhao W; Zweck J; Back CH
    Ultramicroscopy; 2020 May; 212():112973. PubMed ID: 32151794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature.
    He M; Xu T; Gao Y; Hu C; Cai J; Zhang Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots.
    Tejo F; Riveros A; Escrig J; Guslienko KY; Chubykalo-Fesenko O
    Sci Rep; 2018 Apr; 8(1):6280. PubMed ID: 29674646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface acoustic wave controlled skyrmion-based synapse devices.
    Chen C; Lin T; Niu J; Sun Y; Yang L; Kang W; Lei N
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34852336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometrically stabilized skyrmionic vortex in FeGe tetrahedral nanoparticles.
    Niitsu K; Liu Y; Booth AC; Yu X; Mathur N; Stolt MJ; Shindo D; Jin S; Zang J; Nagaosa N; Tokura Y
    Nat Mater; 2022 Mar; 21(3):305-310. PubMed ID: 35087239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states.
    Heo C; Kiselev NS; Nandy AK; Blügel S; Rasing T
    Sci Rep; 2016 Jun; 6():27146. PubMed ID: 27273157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Skyrmionic Bubbles at Room Temperature and Sign Reversal of the Topological Hall Effect in a Layered Ferromagnet Cr
    Liu J; Ding B; Liang J; Li X; Yao Y; Wang W
    ACS Nano; 2022 Sep; 16(9):13911-13918. PubMed ID: 36000915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D quasi-skyrmions in thick cylindrical and dome-shape soft nanodots.
    Berganza E; Fernandez-Roldan JA; Jaafar M; Asenjo A; Guslienko K; Chubykalo-Fesenko O
    Sci Rep; 2022 Mar; 12(1):3426. PubMed ID: 35236906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions.
    Legrand W; Maccariello D; Reyren N; Garcia K; Moutafis C; Moreau-Luchaire C; Collin S; Bouzehouane K; Cros V; Fert A
    Nano Lett; 2017 Apr; 17(4):2703-2712. PubMed ID: 28358984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field.
    Bhattacharya D; Al-Rashid MM; Atulasimha J
    Sci Rep; 2016 Aug; 6():31272. PubMed ID: 27506159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation of Skyrmion by Magnetic Field Gradients: A Stern-Gerlach-Like Experiment.
    Liu J; Song C; Zhao L; Cai L; Feng H; Zhao B; Zhao M; Zhou Y; Fang L; Jiang W
    Nano Lett; 2023 Jun; 23(11):4931-4937. PubMed ID: 37265387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic Control of Ferrimagnetic Skyrmions via Composition Modulation in Pt/Fe
    Xu T; Zhang Y; Wang Z; Bai H; Song C; Liu J; Zhou Y; Je SG; N'Diaye AT; Im MY; Yu R; Chen Z; Jiang W
    ACS Nano; 2023 Apr; 17(8):7920-7928. PubMed ID: 37010987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skyrmion-Mediated Voltage-Controlled Switching of Ferromagnets for Reliable and Energy-Efficient Two-Terminal Memory.
    Bhattacharya D; Atulasimha J
    ACS Appl Mater Interfaces; 2018 May; 10(20):17455-17462. PubMed ID: 29703079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the Coexistence Regime of Incomplete and Tubular Skyrmions in Ferromagnetic/Ferrimagnetic/Ferromagnetic Trilayers.
    Yıldırım O; Tomasello R; Feng Y; Carlotti G; Tacchi S; Vaghefi PM; Giordano A; Dutta T; Finocchio G; Hug HJ; Mandru AO
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions.
    Wu Y; Francisco B; Chen Z; Wang W; Zhang Y; Wan C; Han X; Chi H; Hou Y; Lodesani A; Yin G; Liu K; Cui YT; Wang KL; Moodera JS
    Adv Mater; 2022 Apr; 34(16):e2110583. PubMed ID: 35218078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy.
    Hou Z; Ren W; Ding B; Xu G; Wang Y; Yang B; Zhang Q; Zhang Y; Liu E; Xu F; Wang W; Wu G; Zhang X; Shen B; Zhang Z
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28589629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous skyrmion ground states in magnetic metals.
    Rössler UK; Bogdanov AN; Pfleiderer C
    Nature; 2006 Aug; 442(7104):797-801. PubMed ID: 16915285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial Dense Lattices of Magnetic Skyrmions.
    Sapozhnikov MV; Petrov YV; Gusev NS; Temiryazev AG; Ermolaeva OL; Mironov VL; Udalov OG
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31878166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.