These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31613092)

  • 21. Direct Simulation of the Self-Assembly of a Small DNA Origami.
    Snodin BE; Romano F; Rovigatti L; Ouldridge TE; Louis AA; Doye JP
    ACS Nano; 2016 Feb; 10(2):1724-37. PubMed ID: 26766072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CATANA: an online modelling environment for proteins and nucleic acid nanostructures.
    Kuťák D; Melo L; Schroeder F; Jelic-Matošević Z; Mutter N; Bertoša B; Barišić I
    Nucleic Acids Res; 2022 Jul; 50(W1):W152-W158. PubMed ID: 35544315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autonomously designed free-form 2D DNA origami.
    Jun H; Zhang F; Shepherd T; Ratanalert S; Qi X; Yan H; Bathe M
    Sci Adv; 2019 Jan; 5(1):eaav0655. PubMed ID: 30613779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems.
    Yoo J; Li CY; Slone SM; Maffeo C; Aksimentiev A
    Methods Mol Biol; 2018; 1811():209-229. PubMed ID: 29926456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Planar 2D wireframe DNA origami.
    Wang X; Li S; Jun H; John T; Zhang K; Fowler H; Doye JPK; Chiu W; Bathe M
    Sci Adv; 2022 May; 8(20):eabn0039. PubMed ID: 35594345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems.
    Maffeo C; Aksimentiev A
    Nucleic Acids Res; 2020 May; 48(9):5135-5146. PubMed ID: 32232413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models.
    Naskar S; Maiti PK
    J Mater Chem B; 2021 Jun; 9(25):5102-5113. PubMed ID: 34127998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
    Yoo J; Aksimentiev A
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20099-104. PubMed ID: 24277840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coarse-grained modelling of the structural properties of DNA origami.
    Snodin BEK; Schreck JS; Romano F; Louis AA; Doye JPK
    Nucleic Acids Res; 2019 Feb; 47(3):1585-1597. PubMed ID: 30605514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shape-controlled synthesis of gold nanostructures using DNA origami molds.
    Helmi S; Ziegler C; Kauert DJ; Seidel R
    Nano Lett; 2014 Nov; 14(11):6693-8. PubMed ID: 25275962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools.
    Iacovelli F; Falconi M
    FEBS J; 2015 Sep; 282(17):3298-310. PubMed ID: 25940731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multilayer DNA origami packed on hexagonal and hybrid lattices.
    Ke Y; Voigt NV; Gothelf KV; Shih WM
    J Am Chem Soc; 2012 Jan; 134(3):1770-4. PubMed ID: 22187940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of lattice defects in mixed DNA origami monolayers.
    Xin Y; Ji X; Grundmeier G; Keller A
    Nanoscale; 2020 May; 12(17):9733-9743. PubMed ID: 32324191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures.
    Benson E; Mohammed A; Rayneau-Kirkhope D; Gådin A; Orponen P; Högberg B
    ACS Nano; 2018 Sep; 12(9):9291-9299. PubMed ID: 30188123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule chemical reactions on DNA origami.
    Voigt NV; Tørring T; Rotaru A; Jacobsen MF; Ravnsbaek JB; Subramani R; Mamdouh W; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    Nat Nanotechnol; 2010 Mar; 5(3):200-3. PubMed ID: 20190747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation.
    Poppleton E; Bohlin J; Matthies M; Sharma S; Zhang F; Šulc P
    Nucleic Acids Res; 2020 Jul; 48(12):e72. PubMed ID: 32449920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.