These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31613262)

  • 1. Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering.
    Sánchez-Solís A; Karim F; Alam MS; Zhan Q; López-Luke T; Zhao C
    Opt Lett; 2019 Oct; 44(20):4997-5000. PubMed ID: 31613262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simplified Hollow-Core Photonic Crystal Fiber SERS Probe with a Fully Filled Photoreduction Silver Nanoprism.
    Geng Y; Xu Y; Tan X; Wang L; Li X; Du Y; Hong X
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser.
    Lan X; Han Y; Wei T; Zhang Y; Jiang L; Tsai HL; Xiao H
    Opt Lett; 2009 Aug; 34(15):2285-7. PubMed ID: 19649072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes.
    Guo J; Luo Y; Yang C; Kong L
    Opt Lett; 2018 Nov; 43(21):5443-5446. PubMed ID: 30383028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreduced silver nanoparticles grown on femtosecond laser ablated, D-shaped fiber probe for surface-enhanced Raman scattering.
    Yin Z; Geng Y; Xie Q; Hong X; Tan X; Chen Y; Wang L; Wang W; Li X
    Appl Opt; 2016 Jul; 55(20):5408-12. PubMed ID: 27409318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable fiber sensors based on surface-enhanced Raman scattering.
    Yang X; Tanaka Z; Newhouse R; Xu Q; Chen B; Chen S; Zhang JZ; Gu C
    Rev Sci Instrum; 2010 Dec; 81(12):123103. PubMed ID: 21198010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular fiber sensors based on surface enhanced Raman scattering (SERS).
    Shi C; Zhang Y; Gu C; Chen B; Seballos L; Olson T; Zhang JZ
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2234-46. PubMed ID: 19437961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-fiber SERS sensing with a depressed double cladding fiber probe embedded in a microfluidic chip.
    Li S; Xia L; Li W; Chen X; Yang Z; Xia J
    Appl Opt; 2019 Oct; 58(29):7929-7934. PubMed ID: 31674343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles.
    Chen J; Mårtensson T; Dick KA; Deppert K; Xu HQ; Samuelson L; Xu H
    Nanotechnology; 2008 Jul; 19(27):275712. PubMed ID: 21828724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method.
    Zhou F; Liu Y; Wang H; Wei Y; Zhang G; Ye H; Chen M; Ling D
    Opt Express; 2020 Mar; 28(5):6648-6662. PubMed ID: 32225908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe.
    Milenko K; Fuglerud SS; Kjeldby SB; Ellingsen R; Aksnes A; Hjelme DR
    Opt Lett; 2018 Dec; 43(24):6029-6032. PubMed ID: 30547996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering.
    Liu T; Xiao X; Yang C
    Langmuir; 2011 Apr; 27(8):4623-6. PubMed ID: 21438520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering microchip fabricated by femtosecond laser.
    Lin CH; Jiang L; Xiao H; Chen SJ; Tsai HL
    Opt Lett; 2010 Sep; 35(17):2937-9. PubMed ID: 20808375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering.
    Yang X; Ileri N; Larson CC; Carlson TC; Britten JA; Chang AS; Gu C; Bond TC
    Opt Express; 2012 Oct; 20(22):24819-26. PubMed ID: 23187247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.
    Huang Z; Lei X; Liu Y; Wang Z; Wang X; Wang Z; Mao Q; Meng G
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17247-54. PubMed ID: 26186260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates.
    Liu Z; Hung WH; Aykol M; Valley D; Cronin SB
    Nanotechnology; 2010 Mar; 21(10):105304. PubMed ID: 20160339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation.
    Long Y; Li H; Du Z; Geng M; Liu Z
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):698-708. PubMed ID: 32814193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.