BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31613597)

  • 1. Properties of the Interphase Formed between Argyrodite-Type Li
    Simon FJ; Hanauer M; Henss A; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42186-42196. PubMed ID: 31613597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interphase Formation of PEO
    Simon FJ; Hanauer M; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11713-11723. PubMed ID: 32052956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cl- and Al-Doped Argyrodite Solid Electrolyte Li
    Choi YJ; Kim SI; Son M; Lee JW; Lee DH
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries.
    Wu Z; Xie Z; Yoshida A; Wang J; Yu T; Wang Z; Hao X; Abudula A; Guan G
    J Colloid Interface Sci; 2020 Apr; 565():110-118. PubMed ID: 31935584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Conductivity Argyrodite Li
    Wang S; Zhang Y; Zhang X; Liu T; Lin YH; Shen Y; Li L; Nan CW
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42279-42285. PubMed ID: 30451491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries.
    Wang C; Yang Y; Liu X; Zhong H; Xu H; Xu Z; Shao H; Ding F
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13694-13702. PubMed ID: 28334524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon-Doped Argyrodite Solid Electrolyte Li
    Zhang J; Li L; Zheng C; Xia Y; Gan Y; Huang H; Liang C; He X; Tao X; Zhang W
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41538-41545. PubMed ID: 32822167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the Solid Polymer Electrolyte-Electrode Interface in the Vicinity of Electrochemical Stability Limits.
    Sångeland C; Hernández G; Brandell D; Younesi R; Hahlin M; Mindemark J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28716-28728. PubMed ID: 35708265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Fluorine-Doped Lithium Argyrodite Solid Electrolytes for Solid-State Lithium Metal Batteries.
    Arnold W; Shreyas V; Li Y; Koralalage MK; Jasinski JB; Thapa A; Sumanasekera G; Ngo AT; Narayanan B; Wang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11483-11492. PubMed ID: 35195393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries.
    Yang H; Zhang Y; Tennenbaum MJ; Althouse Z; Ma Y; He Y; Wu Y; Wu TH; Mathur A; Chen P; Huang Y; Fernandez-Nieves A; Kohl PA; Liu N
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27906-27912. PubMed ID: 31298521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium Self-Diffusion in a Polymer Electrolyte for Solid-State Batteries: ToF-SIMS/ssNMR Correlative Characterization and Modeling Based on Lithium Isotopic Labeling.
    Meyer T; Gutel T; Manzanarez H; Bardet M; De Vito E
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44268-44279. PubMed ID: 37672757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li
    Yu C; Ganapathy S; Hageman J; van Eijck L; van Eck ERH; Zhang L; Schwietert T; Basak S; Kelder EM; Wagemaker M
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33296-33306. PubMed ID: 30199216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of current density on the solid electrolyte interphase formation at the lithium∣Li
    Narayanan S; Ulissi U; Gibson JS; Chart YA; Weatherup RS; Pasta M
    Nat Commun; 2022 Nov; 13(1):7237. PubMed ID: 36433957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the Right Metrics for an Efficient Solvent-Free Formulation of PEO:LiTFSI:Li
    Chometon R; Deschamps M; Dugas R; Quemin E; Hennequart B; Deschamps M; Tarascon JM; Laberty-Robert C
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58794-58805. PubMed ID: 38055784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries.
    Xue C; Zhang X; Wang S; Li L; Nan CW
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24837-24844. PubMed ID: 32383853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Lifetime of Battery Cells Based on Solid-State Li
    Schlenker R; Stępień D; Koch P; Hupfer T; Indris S; Roling B; Miß V; Fuchs A; Wilhelmi M; Ehrenberg H
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20012-20025. PubMed ID: 32251596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid-State Batteries.
    Riegger LM; Schlem R; Sann J; Zeier WG; Janek J
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6718-6723. PubMed ID: 33314609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Protection of a Li-Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li
    Li B; Sun Z; Lv N; Hu Y; Jiang L; Zhang Z; Liu F
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37738-37746. PubMed ID: 35951550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.