BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31613606)

  • 1. Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia.
    Kang P; Li X; Liu Y; Shiers SI; Xiong H; Giannotta M; Dejana E; Price TJ; Randrianalisoa J; Nielsen SO; Qin Z
    ACS Nano; 2019 Nov; 13(11):12487-12499. PubMed ID: 31613606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia.
    Kang P; Xie C; Fall O; Randrianalisoa J; Qin Z
    J Biomech Eng; 2021 Mar; 143(3):. PubMed ID: 33156335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating.
    Kang P; Chen Z; Nielsen SO; Hoyt K; D'Arcy S; Gassensmith JJ; Qin Z
    Small; 2017 Sep; 13(36):. PubMed ID: 28696524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.
    Yakunin AN; Avetisyan YA; Tuchin VV
    J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermophysical and biological responses of gold nanoparticle laser heating.
    Qin Z; Bischof JC
    Chem Soc Rev; 2012 Feb; 41(3):1191-217. PubMed ID: 21947414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of protein corona composition of gold nanoparticles following plasmonic heating.
    Mahmoudi M; Lohse SE; Murphy CJ; Fathizadeh A; Montazeri A; Suslick KS
    Nano Lett; 2014 Jan; 14(1):6-12. PubMed ID: 24328336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.
    Boutopoulos C; Hatef A; Fortin-Deschênes M; Meunier M
    Nanoscale; 2015 Jul; 7(27):11758-65. PubMed ID: 26104482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to Qβ Virus-like Particles.
    Parsamian P; Liu Y; Xie C; Chen Z; Kang P; Wijesundara YH; Al-Kharji NM; Ehrman RN; Trashi O; Randrianalisoa J; Zhu X; D'Souza M; Wilson LA; Kim MJ; Qin Z; Gassensmith JJ
    ACS Nano; 2023 Apr; 17(8):7797-7805. PubMed ID: 36884260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating.
    Murph SE; Larsen GK; Lascola RJ
    J Vis Exp; 2016 Feb; (108):53598. PubMed ID: 26967491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method.
    Reynoso FJ; Lee CD; Cheong SK; Cho SH
    Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro self-assembly of gold nanoparticle-coated poly(3-hydroxybutyrate) granules exhibiting plasmon-induced thermo-optical enhancements.
    Rey DA; Strickland AD; Kirui D; Niamsiri N; Batt CA
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1804-10. PubMed ID: 20565131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection.
    Heinemann D; Kalies S; Schomaker M; Ertmer W; Murua Escobar H; Meyer H; Ripken T
    Nanotechnology; 2014 Jun; 25(24):245101. PubMed ID: 24859743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-targeted photofabrication of gold nanoparticles inside cells.
    Smith NI; Mochizuki K; Niioka H; Ichikawa S; Pavillon N; Hobro AJ; Ando J; Fujita K; Kumagai Y
    Nat Commun; 2014 Oct; 5():5144. PubMed ID: 25298313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective inactivation of enzymes conjugated to nanoparticles using tuned laser illumination.
    Ilovitsh A; Polak P; Zalevsky Z; Shefi O
    Cytometry A; 2017 Aug; 91(8):767-774. PubMed ID: 27911977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup.
    Kalies S; Antonopoulos GC; Rakoski MS; Heinemann D; Schomaker M; Ripken T; Meyer H
    PLoS One; 2015; 10(4):e0124052. PubMed ID: 25909631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced breakdown of an optically trapped gold nanoparticle for single cell transfection.
    Arita Y; Ploschner M; Antkowiak M; Gunn-Moore F; Dholakia K
    Opt Lett; 2013 Sep; 38(17):3402-5. PubMed ID: 23988969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell perforation mediated by plasmonic bubbles generated by a single near infrared femtosecond laser pulse.
    Boutopoulos C; Bergeron E; Meunier M
    J Biophotonics; 2016 Jan; 9(1-2):26-31. PubMed ID: 26199220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Arrhenius Reaction-Diffusion Kinetics for Protein Inactivation over a Large Temperature Range.
    Sarkar D; Kang P; Nielsen SO; Qin Z
    ACS Nano; 2019 Aug; 13(8):8669-8679. PubMed ID: 31268674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.