BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31613754)

  • 1. The Effect of Curing Temperature and Time on the Acoustic and Optical Properties of PVCP.
    Bakaric M; Miloro P; Zeqiri B; Cox BT; Treeby BE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):505-512. PubMed ID: 31613754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics.
    Spirou GM; Oraevsky AA; Vitkin IA; Whelan WM
    Phys Med Biol; 2005 Jul; 50(14):N141-53. PubMed ID: 16177502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.
    Vogt WC; Jia C; Wear KA; Garra BS; Joshua Pfefer T
    J Biomed Opt; 2016 Oct; 21(10):101405. PubMed ID: 26886681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging.
    Fonseca M; Zeqiri B; Beard PC; Cox BT
    Phys Med Biol; 2016 Jul; 61(13):4950-73. PubMed ID: 27286411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.
    de Carvalho IM; De Matheo LL; Costa Júnior JF; Borba Cde M; von Krüger MA; Infantosi AF; Pereira WC
    Ultrasonics; 2016 Aug; 70():98-106. PubMed ID: 27153374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of oral cancer tissue-mimicking phantom based on polyvinyl chloride plastisol and graphite for terahertz frequencies.
    Zhang T; Nazarov R; Popov A; Demchenko P; Bykov A; Grigorev R; Kuzikova A; Soboleva V; Zykov D; Meglinski I; Khodzitskiy MK
    J Biomed Opt; 2020 Nov; 25(12):. PubMed ID: 33205633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustical properties of selected tissue phantom materials for ultrasound imaging.
    Zell K; Sperl JI; Vogel MW; Niessner R; Haisch C
    Phys Med Biol; 2007 Oct; 52(20):N475-84. PubMed ID: 17921571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging.
    Nguyen CD; Edwards SA; Iorizzo TW; Longo BN; Yaroslavsky AN; Kaplan DL; Mallidi S
    Photoacoustics; 2022 Dec; 28():100416. PubMed ID: 36386295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Stable Phantom Material for Optical and Acoustic Imaging.
    Hacker L; Ivory AM; Joseph J; Gröhl J; Zeqiri B; Rajagopal S; Bohndiek SE
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37395576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-anthropomorphic photoacoustic breast phantom.
    Dantuma M; van Dommelen R; Manohar S
    Biomed Opt Express; 2019 Nov; 10(11):5921-5939. PubMed ID: 31799055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.
    Spirou GM; Mandelis A; Vitkin IA; Whelan WM
    Appl Opt; 2008 May; 47(14):2564-73. PubMed ID: 18470251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.
    Chen AI; Balter ML; Chen MI; Gross D; Alam SK; Maguire TJ; Yarmush ML
    Med Phys; 2016 Jun; 43(6):3117-3131. PubMed ID: 27277058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PVCP-based anthropomorphic breast phantoms containing structures similar to lactiferous ducts for ultrasound imaging: A comparison with human breasts.
    De Matheo LL; Geremia J; Calas MJG; Costa-Júnior JFS; da Silva FFF; von Krüger MA; Pereira WCA
    Ultrasonics; 2018 Nov; 90():144-152. PubMed ID: 29966842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable phantom materials for ultrasound and optical imaging.
    Cabrelli LC; Pelissari PI; Deana AM; Carneiro AA; Pavan TZ
    Phys Med Biol; 2017 Jan; 62(2):432-447. PubMed ID: 27997374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums.
    Pattyn A; Mumm Z; Alijabbari N; Duric N; Anastasio MA; Mehrmohammadi M
    Photoacoustics; 2021 Sep; 23():100275. PubMed ID: 34094852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging.
    Maneas E; Xia W; Ogunlade O; Fonseca M; Nikitichev DI; David AL; West SJ; Ourselin S; Hebden JC; Vercauteren T; Desjardins AE
    Biomed Opt Express; 2018 Mar; 9(3):1151-1163. PubMed ID: 29541509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms.
    Hacker L; Joseph J; Ivory AM; Saed MO; Zeqiri B; Rajagopal S; Bohndiek SE
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3593-3603. PubMed ID: 34152979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.