These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31613774)

  • 1. Rapid Reconstruction of Time-varying Gene Regulatory Networks with Limited Main Memory.
    Pyne S; Anand A
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1608-1619. PubMed ID: 31613774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Reconstruction of Time-Varying Gene Regulatory Networks.
    Pyne S; Kumar AR; Anand A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):278-291. PubMed ID: 30072338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network.
    Chen H; Maduranga DAK; Mundra PA; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.
    Hase T; Ghosh S; Yamanaka R; Kitano H
    PLoS Comput Biol; 2013; 9(11):e1003361. PubMed ID: 24278007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid Bayesian network learning method for constructing gene networks.
    Wang M; Chen Z; Cloutier S
    Comput Biol Chem; 2007 Oct; 31(5-6):361-72. PubMed ID: 17889617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KBoost: a new method to infer gene regulatory networks from gene expression data.
    Iglesias-Martinez LF; De Kegel B; Kolch W
    Sci Rep; 2021 Jul; 11(1):15461. PubMed ID: 34326402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-Driven and Knowledge-Based Algorithms for Gene Network Reconstruction on High-Dimensional Data.
    Abbaszadeh O; Azarpeyvand A; Khanteymoori A; Bahari A
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1545-1557. PubMed ID: 33119511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3off2: A network reconstruction algorithm based on 2-point and 3-point information statistics.
    Affeldt S; Verny L; Isambert H
    BMC Bioinformatics; 2016 Jan; 17 Suppl 2(Suppl 2):12. PubMed ID: 26823190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale binarization of gene expression data for reconstructing Boolean networks.
    Hopfensitz M; Mussel C; Wawra C; Maucher M; Kuhl M; Neumann H; Kestler HA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):487-98. PubMed ID: 21464514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iLSGRN: inference of large-scale gene regulatory networks based on multi-model fusion.
    Wu Y; Qian B; Wang A; Dong H; Zhu E; Ma B
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37851379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks.
    Mignone P; Pio G; Džeroski S; Ceci M
    Sci Rep; 2020 Dec; 10(1):22295. PubMed ID: 33339842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data.
    Ajmal HB; Madden MG
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2794-2805. PubMed ID: 34181549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Gene Regulatory Network Activity From Dynamic Expression Data by Regularized Constraint Programming.
    Wang C; Xu S; Liu ZP
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5738-5749. PubMed ID: 35976846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge.
    Geier F; Timmer J; Fleck C
    BMC Syst Biol; 2007 Feb; 1():11. PubMed ID: 17408501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive overview and critical evaluation of gene regulatory network inference technologies.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.