BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 31613927)

  • 1. Real vs. immersive-virtual emotional experience: Analysis of psycho-physiological patterns in a free exploration of an art museum.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Gentili C; Scilingo EP; Alcañiz M; Valenza G
    PLoS One; 2019; 14(10):e0223881. PubMed ID: 31613927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G
    Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios.
    Marín-Morales J; Higuera-Trujillo JL; Guixeres J; Llinares C; Alcañiz M; Valenza G
    PLoS One; 2021; 16(7):e0254098. PubMed ID: 34197553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding subjective emotional arousal from EEG during an immersive virtual reality experience.
    Hofmann SM; Klotzsche F; Mariola A; Nikulin V; Villringer A; Gaebler M
    Elife; 2021 Oct; 10():. PubMed ID: 34708689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction.
    Jung D; Choi J; Kim J; Cho S; Han S
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When Virtual Feels Real: Comparing Emotional Responses and Presence in Virtual and Natural Environments.
    Chirico A; Gaggioli A
    Cyberpsychol Behav Soc Netw; 2019 Mar; 22(3):220-226. PubMed ID: 30730222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual and Reality: A Neurophysiological Pilot Study of the Sarcophagus of the Spouses.
    Giorgi A; Menicocci S; Forte M; Ferrara V; Mingione M; Alaimo Di Loro P; Inguscio BMS; Ferrara S; Babiloni F; Vozzi A; Ronca V; Cartocci G
    Brain Sci; 2023 Apr; 13(4):. PubMed ID: 37190600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory.
    Zangeneh Soroush M; Maghooli K; Setarehdan SK; Nasrabadi AM
    Med Hypotheses; 2019 Jun; 127():34-45. PubMed ID: 31088645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human emotion classification based on multiple physiological signals by wearable system.
    Liu X; Wang Q; Liu D; Wang Y; Zhang Y; Bai O; Sun J
    Technol Health Care; 2018; 26(S1):459-469. PubMed ID: 29758969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Emotionally Adaptive Virtual Reality for Mental Health Applications.
    Bermudez I Badia S; Quintero LV; Cameirao MS; Chirico A; Triberti S; Cipresso P; Gaggioli A
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1877-1887. PubMed ID: 30387752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrophysiological characteristics of emotion arousal difference between stereoscopic and non-stereoscopic virtual reality films].
    Tian F; Zhang W; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):56-66. PubMed ID: 35231966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wearable Head Mounted Display Bio-Signals Pad System for Emotion Recognition.
    Wan C; Chen D; Huang Z; Luo X
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: a comparative study.
    Yuvaraj R; Murugappan M; Ibrahim NM; Omar MI; Sundaraj K; Mohamad K; Palaniappan R; Satiyan M
    J Integr Neurosci; 2014 Mar; 13(1):89-120. PubMed ID: 24738541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Sentiment Analysis Model of Museum User Experience Evaluation Data Based on Unbalanced Data Analysis Technology.
    Chen X; Chen Z; Xiao L; Zhou M
    Comput Intell Neurosci; 2022; 2022():2096634. PubMed ID: 35528346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotion Recognition in Immersive Virtual Reality: From Statistics to Affective Computing.
    Marín-Morales J; Llinares C; Guixeres J; Alcañiz M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32927722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain and Body Emotional Responses: Multimodal Approximation for Valence Classification.
    Sorinas J; Ferrández JM; Fernandez E
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating EEG Patterns for Dual-Stimuli Induced Human Fear Emotional State.
    Masood N; Farooq H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.