These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31614083)

  • 1. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer.
    Hogan LT; Horak EH; Ward JM; Knapper KA; Nic Chormaic S; Goldsmith RH
    ACS Nano; 2019 Nov; 13(11):12743-12757. PubMed ID: 31614083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization.
    Thakkar N; Rea MT; Smith KC; Heylman KD; Quillin SC; Knapper KA; Horak EH; Masiello DJ; Goldsmith RH
    Nano Lett; 2017 Nov; 17(11):6927-6934. PubMed ID: 28968499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Grafting-To" Covalent Binding of Plasmonic Nanoparticles onto Silica WGM Microresonators: Mechanically Robust Single-Molecule Sensors and Determination of Activation Energies from Single-Particle Events.
    Serrano MP; Subramanian S; von Bilderling C; Rafti M; Vollmer F
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating Energy Pathways through Simultaneous Measurement of Absorption and Transmission in a Coupled Plasmonic-Photonic Cavity.
    Pan F; Smith KC; Nguyen HL; Knapper KA; Masiello DJ; Goldsmith RH
    Nano Lett; 2020 Jan; 20(1):50-58. PubMed ID: 31424952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Control of Plasmonic-Photonic Interactions in a Microbubble Cavity.
    Pan F; Karlsson K; Nixon AG; Hogan LT; Ward JM; Smith KC; Masiello DJ; Nic Chormaic S; Goldsmith RH
    J Phys Chem C Nanomater Interfaces; 2022 Dec; 126(48):20470-20479. PubMed ID: 36620077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators.
    Heylman KD; Knapper KA; Goldsmith RH
    J Phys Chem Lett; 2014 Jun; 5(11):1917-23. PubMed ID: 26273873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and Operation of a Light-driven Gold Nanorod Rotary Motor System.
    Andrén D; Karpinski P; Käll M
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators.
    Knapper KA; Pan F; Rea MT; Horak EH; Rogers JD; Goldsmith RH
    Opt Express; 2018 Sep; 26(19):25020-25030. PubMed ID: 30469610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis.
    Andrén D; Shao L; Odebo Länk N; Aćimović SS; Johansson P; Käll M
    ACS Nano; 2017 Oct; 11(10):10053-10061. PubMed ID: 28872830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensors based on evanescent field perturbation of microresonators.
    da Silva J; Salameh E; Ötügen MV; Fourguette D
    Appl Opt; 2021 Feb; 60(5):1434-1439. PubMed ID: 33690588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whispering-Gallery Sensors.
    Jiang X; Qavi AJ; Huang SH; Yang L
    Matter; 2020 Aug; 3(2):371-392. PubMed ID: 32835223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy.
    Horak EH; Rea MT; Heylman KD; Gelbwaser-Klimovsky D; Saikin SK; Thompson BJ; Kohler DD; Knapper KA; Wei W; Pan F; Gopalan P; Wright JC; Aspuru-Guzik A; Goldsmith RH
    Nano Lett; 2018 Mar; 18(3):1600-1607. PubMed ID: 29378412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering.
    Gu F; Xie F; Lin X; Linghu S; Fang W; Zeng H; Tong L; Zhuang S
    Light Sci Appl; 2017 Oct; 6(10):e17061. PubMed ID: 30167203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.
    Konrad A; Kern AM; Brecht M; Meixner AJ
    Nano Lett; 2015 Jul; 15(7):4423-8. PubMed ID: 26061892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Microbottle Resonators for Sensing.
    Bianucci P
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode spectrum and temporal soliton formation in optical microresonators.
    Herr T; Brasch V; Jost JD; Mirgorodskiy I; Lihachev G; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2014 Sep; 113(12):123901. PubMed ID: 25279630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles.
    Frigenti G; Cavigli L; Ratto F; Centi S; Murzina TV; Farnesi D; Pelli S; Soria S; Nunzi Conti G
    Opt Express; 2021 Sep; 29(20):31130-31136. PubMed ID: 34615212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic rod-in-shell nanoparticles for photothermal therapy.
    Wang S; Xu H; Ye J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12275-81. PubMed ID: 24818860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.