These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31614091)

  • 1. Inducing a Net Positive Flow of Water in Functionalized Concentric Carbon Nanotubes Using Rotating Electric Fields.
    Ostler D; Kannam SK; Frascoli F; Daivis PJ; D Todd B
    Langmuir; 2019 Nov; 35(45):14742-14749. PubMed ID: 31614091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of Electropumping in Nanochannels.
    Ostler D; Kannam SK; Frascoli F; Daivis PJ; Todd BD
    Nano Lett; 2020 May; 20(5):3396-3402. PubMed ID: 32293187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electropumping of water with rotating electric fields.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Apr; 138(15):154712. PubMed ID: 23614441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electropumping of nanofluidic water by linear and angular momentum coupling: theoretical foundations and molecular dynamics simulations.
    Daivis PJ; Hansen JS; Todd BD
    Phys Chem Chem Phys; 2021 Nov; 23(44):25003-25018. PubMed ID: 34739012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electropumping of Water Through Human Aquaporin 4 by Circularly Polarized Electric Fields: Dramatic Enhancement and Control Revealed by Non-Equilibrium Molecular Dynamics.
    Burnham CJ; English NJ
    J Phys Chem Lett; 2017 Oct; 8(19):4646-4651. PubMed ID: 28905623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotating-Electric-Field-Induced Carbon-Nanotube-Based Nanomotor in Water: A Molecular Dynamics Study.
    Rahman MM; Chowdhury MM; Alam MK
    Small; 2017 May; 13(19):. PubMed ID: 28371324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls.
    Bonthuis DJ; Rinne KF; Falk K; Nadir Kaplan C; Horinek D; Nihat Berker A; Bocquet L; Netz RR
    J Phys Condens Matter; 2011 May; 23(18):184110. PubMed ID: 21508478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction of water slipping in carbon nanotubes.
    Ma MD; Shen L; Sheridan J; Liu JZ; Chen C; Zheng Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036316. PubMed ID: 21517596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
    Vuković L; Vokac E; Král P
    J Phys Chem Lett; 2014 Jun; 5(12):2131-7. PubMed ID: 26270504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumping of water by rotating chiral carbon nanotube.
    Feng JW; Ding HM; Ren CL; Ma YQ
    Nanoscale; 2014 Nov; 6(22):13606-12. PubMed ID: 25271402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water distillation modeling by disjoint CNT-based channels under the influence of external electric fields.
    Rizi SH; Lohrasebi A
    J Mol Model; 2020 Aug; 26(9):236. PubMed ID: 32812099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water transport through functionalized nanotubes with tunable hydrophobicity.
    Moskowitz I; Snyder MA; Mittal J
    J Chem Phys; 2014 Nov; 141(18):18C532. PubMed ID: 25399197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric fields can control the transport of water in carbon nanotubes.
    Ritos K; Borg MK; Mottram NJ; Reese JM
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Interface Ions in the Control of Water Transport through a Carbon Nanotube.
    Zhao Y; Chen J; Huang D; Su J
    Langmuir; 2019 Oct; 35(41):13442-13451. PubMed ID: 31539260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculating the hydrodynamic volume of poly(ethylene oxylated) single-walled carbon nanotubes and hydrophilic carbon clusters.
    Bobadilla AD; Samuel EL; Tour JM; Seminario JM
    J Phys Chem B; 2013 Jan; 117(1):343-54. PubMed ID: 23206183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drag on a nanotube in uniform liquid argon flow.
    Tang W; Advani SG
    J Chem Phys; 2006 Nov; 125(17):174706. PubMed ID: 17100460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier Transport Engineering in Carbon Nanotubes by Chirality-Induced Spin Polarization.
    Rahman MW; Firouzeh S; Mujica V; Pramanik S
    ACS Nano; 2020 Mar; 14(3):3389-3396. PubMed ID: 32096973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water alignment and proton conduction inside carbon nanotubes.
    Mann DJ; Halls MD
    Phys Rev Lett; 2003 May; 90(19):195503. PubMed ID: 12785955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.