These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 31614103)
1. Spike-Based Winner-Take-All Computation: Fundamental Limits and Order-Optimal Circuits. Su L; Chang CJ; Lynch N Neural Comput; 2019 Dec; 31(12):2523-2561. PubMed ID: 31614103 [TBL] [Abstract][Full Text] [Related]
2. From Winner-Takes-All to Winners-Share-All: Exploiting the Information Capacity in Temporal Codes. Payvand M; Theogarajan L Neural Comput; 2018 Mar; 30(3):761-791. PubMed ID: 29220307 [TBL] [Abstract][Full Text] [Related]
3. A 4K-Input High-Speed Winner-Take-All (WTA) Circuit with Single-Winner Selection for Change-Driven Vision Sensors. Pardo F; Reig C; Boluda JA; Vegara F Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669700 [TBL] [Abstract][Full Text] [Related]
4. Robust parallel decision-making in neural circuits with nonlinear inhibition. Kriener B; Chaudhuri R; Fiete IR Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25505-25516. PubMed ID: 33008882 [TBL] [Abstract][Full Text] [Related]
5. Computation with spikes in a winner-take-all network. Oster M; Douglas R; Liu SC Neural Comput; 2009 Sep; 21(9):2437-65. PubMed ID: 19548795 [TBL] [Abstract][Full Text] [Related]
6. Initialization-Based k-Winners-Take-All Neural Network Model Using Modified Gradient Descent. Zhang Y; Li S; Geng G IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4130-4138. PubMed ID: 34752408 [TBL] [Abstract][Full Text] [Related]
7. A novel recurrent neural network with one neuron and finite-time convergence for k-winners-take-all operation. Liu Q; Dang C; Cao J IEEE Trans Neural Netw; 2010 Jul; 21(7):1140-8. PubMed ID: 20659863 [TBL] [Abstract][Full Text] [Related]
8. Fast computation with spikes in a recurrent neural network. Jin DZ; Seung HS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051922. PubMed ID: 12059608 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of a Winner-Take-All Neural Network. KINCAID TG; COHEN MA; FANG Y Neural Netw; 1996 Oct; 9(7):1141-1154. PubMed ID: 12662589 [TBL] [Abstract][Full Text] [Related]
10. Effect of Time-Varying Multiplicative Noise on DNN- k WTA Model. Lu W; Zheng Y; Leung CS IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37796669 [TBL] [Abstract][Full Text] [Related]
11. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210 [TBL] [Abstract][Full Text] [Related]
12. On Wang $k$ WTA With Input Noise, Output Node Stochastic, and Recurrent State Noise. Sum J; Leung CS; Ho KI IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4212-4222. PubMed ID: 29989975 [TBL] [Abstract][Full Text] [Related]
13. A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons. Zhang M; Qu H; Belatreche A; Chen Y; Yi Z IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):123-137. PubMed ID: 29993588 [TBL] [Abstract][Full Text] [Related]
14. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework. Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633 [TBL] [Abstract][Full Text] [Related]
15. Analysis for a class of winner-take-all model. Sum JP; Leung CS; Tam PK; Young GH; Kan WK; Chan LW IEEE Trans Neural Netw; 1999; 10(1):64-71. PubMed ID: 18252504 [TBL] [Abstract][Full Text] [Related]
16. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
17. Collective stability of networks of winner-take-all circuits. Rutishauser U; Douglas RJ; Slotine JJ Neural Comput; 2011 Mar; 23(3):735-73. PubMed ID: 21162667 [TBL] [Abstract][Full Text] [Related]
18. Rate-synchrony relationship between input and output of spike trains in neuronal networks. Wang S; Zhou C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011917. PubMed ID: 20365409 [TBL] [Abstract][Full Text] [Related]
19. Designing spiking neural networks for robust and reconfigurable computation. Börner G; Schittler Neves F; Timme M Chaos; 2023 Aug; 33(8):. PubMed ID: 38060785 [TBL] [Abstract][Full Text] [Related]
20. A biologically plausible computational model for auditory object recognition. Larson E; Billimoria CP; Sen K J Neurophysiol; 2009 Jan; 101(1):323-31. PubMed ID: 18987124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]