BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31614133)

  • 1. CAIII expression in skeletal muscle is regulated by Ca
    Huang H; Zhao Y; Shang X; Ren H; Zhao Y; Liu X
    Exp Cell Res; 2019 Dec; 385(1):111672. PubMed ID: 31614133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of carbonic anhydrase III and skeletal muscle remodeling following selective denervation.
    Huang H; Zhao Y; Shang X; Liu X; Ren H
    Mol Med Rep; 2017 Dec; 16(6):8289-8294. PubMed ID: 28983629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-β1 regulates expression of the matrix metalloproteinase 20 (Mmp20) gene through a mechanism involving the transcription factor, myocyte enhancer factor-2C, in ameloblast lineage cells.
    Gao Y; Zhang L; Xiang L; Li B; Liu X; Wang Y; Sun Y
    Eur J Oral Sci; 2014 Apr; 122(2):114-20. PubMed ID: 24495128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function analysis of Mef2c promoter in muscle differentiation.
    Jin W; Liu M; Peng J; Jiang S
    Biotechnol Appl Biochem; 2017 Sep; 64(5):647-656. PubMed ID: 27354201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.
    Wu H; Ren Y; Pan W; Dong Z; Cang M; Liu D
    Cell Biol Int; 2015 Nov; 39(11):1264-73. PubMed ID: 26041412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-oxidative response of carbonic anhydrase III in skeletal muscle.
    Zimmerman UJ; Wang P; Zhang X; Bogdanovich S; Forster R
    IUBMB Life; 2004 Jun; 56(6):343-7. PubMed ID: 15370882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle.
    Liu Y; Randall WR; Schneider MF
    J Cell Biol; 2005 Mar; 168(6):887-97. PubMed ID: 15767461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels.
    Panda AC; Abdelmohsen K; Yoon JH; Martindale JL; Yang X; Curtis J; Mercken EM; Chenette DM; Zhang Y; Schneider RJ; Becker KG; de Cabo R; Gorospe M
    Mol Cell Biol; 2014 Aug; 34(16):3106-19. PubMed ID: 24891619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced sensitivity to hydrogen peroxide-induced apoptosis in Evi1 transformed Rat1 fibroblasts due to repression of carbonic anhydrase III.
    Roy P; Reavey E; Rayne M; Roy S; Abed El Baky M; Ishii Y; Bartholomew C
    FEBS J; 2010 Jan; 277(2):441-52. PubMed ID: 20015077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance.
    Feng HZ; Jin JP
    Front Physiol; 2016; 7():597. PubMed ID: 28018233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells.
    Dong Z; Pan W; Wu H; Liu D; Cang M
    Biomed Res Int; 2015; 2015():748470. PubMed ID: 26788505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonic anhydrase III is a new target of HIF1α in prostate cancer model.
    Okuyan D; Aydogan Turkoglu S; Kockar F
    Gene; 2020 Dec; 762():145034. PubMed ID: 32777521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary leucine and fish oil cooperatively regulate skeletal myofiber type transformation
    Gong S; Yin Y; Han M; Guo L; Duan Y; Guo Q; Yin J; Li F
    Food Funct; 2023 Jan; 14(1):133-147. PubMed ID: 36524418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrase III promotes transformation and invasion capability in hepatoma cells through FAK signaling pathway.
    Dai HY; Hong CC; Liang SC; Yan MD; Lai GM; Cheng AL; Chuang SE
    Mol Carcinog; 2008 Dec; 47(12):956-63. PubMed ID: 18444244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca
    Duran J; Lagos D; Pavez M; Troncoso MF; Ramos S; Barrientos G; Ibarra C; Lavandero S; Estrada M
    Front Pharmacol; 2017; 8():604. PubMed ID: 28955223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipin1 is required for skeletal muscle development by regulating MEF2c and MyoD expression.
    Jama A; Huang D; Alshudukhi AA; Chrast R; Ren H
    J Physiol; 2019 Feb; 597(3):889-901. PubMed ID: 30511745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of skeletal muscle fiber type and slow myosin heavy chain 2 gene expression by inositol trisphosphate receptor 1.
    Jordan T; Jiang H; Li H; DiMario JX
    J Cell Sci; 2005 May; 118(Pt 10):2295-302. PubMed ID: 15870113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAIII a marker for early myogenesis: analysis of expression in cultured myogenic cells.
    Tweedie S; Morrison K; Charlton J; Edwards YH
    Somat Cell Mol Genet; 1991 May; 17(3):215-28. PubMed ID: 1904630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the phosphatase activity of carbonic anhydrase III on a nitrocellulose membrane following 2D gel electrophoresis.
    Huang H; Ren HM; Shang XL; Liu XY
    Mol Med Rep; 2014 Oct; 10(4):1887-92. PubMed ID: 25109532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of CaMKII in regulating GLUT4 expression in skeletal muscle.
    Ojuka EO; Goyaram V; Smith JA
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E322-31. PubMed ID: 22496345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.