These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31614183)

  • 21. Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface.
    Mashat MEM; Lin CT; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2178-2185. PubMed ID: 31443036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance variation in motor imagery brain-computer interface: a brief review.
    Ahn M; Jun SC
    J Neurosci Methods; 2015 Mar; 243():103-10. PubMed ID: 25668430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Memory load and display polarity in visual search performance and EEG response.
    Chan T; Hsu HY
    Percept Mot Skills; 2010 Feb; 110(1):185-94. PubMed ID: 20391884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface.
    Corsi MC; Chavez M; Schwartz D; Hugueville L; Khambhati AN; Bassett DS; De Vico Fallani F
    Int J Neural Syst; 2019 Feb; 29(1):1850014. PubMed ID: 29768971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study.
    Vučković A; Wallace L; Allan DB
    J Neurol Phys Ther; 2015 Jan; 39(1):3-14. PubMed ID: 25415550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces.
    Leeuwis N; Paas A; Alimardani M
    Front Hum Neurosci; 2021; 15():634748. PubMed ID: 33889080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders.
    Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M
    J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of the Functional Brain Connectivity and Lower-Limb Motor Imagery Performance After Transcranial Direct Current Stimulation.
    Ortiz M; Iáñez E; Gaxiola-Tirado JA; Gutiérrez D; Azorín JM
    Int J Neural Syst; 2020 Aug; 30(8):2050038. PubMed ID: 32588685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Brain-computer interface-based motor imagery training for patients with neurological movement disorders].
    Liburkina SP; Vasilyev AN; Kaplan AY; Ivanova GE; Chukanova AS
    Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(9. Vyp. 2):63-68. PubMed ID: 30499562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fresh look at functional link neural network for motor imagery-based brain-computer interface.
    Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S
    J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis.
    Hohmann MR; Fomina T; Jayaram V; Widmann N; Förster C; Just J; Synofzik M; Schölkopf B; Schöls L; Grosse-Wentrup M
    Prog Brain Res; 2016; 228():221-39. PubMed ID: 27590971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.
    Gonzalez-Rosa JJ; Natali F; Tettamanti A; Cursi M; Velikova S; Comi G; Gatti R; Leocani L
    Behav Brain Res; 2015 Mar; 281():290-300. PubMed ID: 25532912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.
    Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L
    J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid brain-computer interface with motor imagery and error-related brain activity.
    Mousavi M; Krol LR; de Sa VR
    J Neural Eng; 2020 Oct; 17(5):056041. PubMed ID: 32726757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salient distractors open the door of perception: alpha desynchronization marks sensory gating in a working memory task.
    Fodor Z; Marosi C; Tombor L; Csukly G
    Sci Rep; 2020 Nov; 10(1):19179. PubMed ID: 33154495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurophysiological predictors and spectro-spatial discriminative features for enhancing SMR-BCI.
    Robinson N; Thomas KP; Vinod AP
    J Neural Eng; 2018 Dec; 15(6):066032. PubMed ID: 30277219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.