BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31614438)

  • 1. Systematic Approach to Developing Splice Modulating Antisense Oligonucleotides.
    Aung-Htut MT; McIntosh CS; Ham KA; Pitout IL; Flynn LL; Greer K; Fletcher S; Wilton SD
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal antisense oligonucleotide modifications can enhance induced exon skipping.
    Gebski BL; Errington SJ; Johnsen RD; Fletcher S; Wilton SD
    Neuromuscul Disord; 2005 Oct; 15(9-10):622-9. PubMed ID: 16084084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides.
    Wilton SD; Lloyd F; Carville K; Fletcher S; Honeyman K; Agrawal S; Kole R
    Neuromuscul Disord; 1999 Jul; 9(5):330-8. PubMed ID: 10407856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.
    Wilton SD; Fletcher S
    Curr Gene Ther; 2011 Aug; 11(4):259-75. PubMed ID: 21453280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invention and Early History of Exon Skipping and Splice Modulation.
    Lim KRQ; Yokota T
    Methods Mol Biol; 2018; 1828():3-30. PubMed ID: 30171532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing splice-switching oligomer sequences using 2'-O-methyl phosphorothioate chemistry.
    Adkin C; Fletcher S; Wilton SD
    Methods Mol Biol; 2012; 867():169-88. PubMed ID: 22454061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries.
    Adams AM; Harding PL; Iversen PL; Coleman C; Fletcher S; Wilton SD
    BMC Mol Biol; 2007 Jul; 8():57. PubMed ID: 17601349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake.
    Schmajuk G; Sierakowska H; Kole R
    J Biol Chem; 1999 Jul; 274(31):21783-9. PubMed ID: 10419493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing in the immune system: potential targets for therapeutic intervention by antisense-mediated alternative splicing.
    Mourich DV; Iversen PL
    Curr Opin Mol Ther; 2009 Apr; 11(2):124-32. PubMed ID: 19330718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines.
    Li Z; Li Q; Han L; Tian N; Liang Q; Li Y; Zhao X; Du C; Tian Y
    Oncol Rep; 2016 Feb; 35(2):1013-9. PubMed ID: 26718027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense oligonucleotide induction of progerin in human myogenic cells.
    Luo YB; Mitrpant C; Adams AM; Johnsen RD; Fletcher S; Mastaglia FL; Wilton SD
    PLoS One; 2014; 9(6):e98306. PubMed ID: 24892300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-mRNA Splicing Modulation by Antisense Oligonucleotides.
    Singh NN; Luo D; Singh RN
    Methods Mol Biol; 2018; 1828():415-437. PubMed ID: 30171557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of individual exons and induction of soluble murine interleukin-5 receptor-alpha chain expression through antisense oligonucleotide-mediated redirection of pre-mRNA splicing.
    Karras JG; McKay RA; Dean NM; Monia BP
    Mol Pharmacol; 2000 Aug; 58(2):380-7. PubMed ID: 10908306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA.
    Ittig D; Liu S; Renneberg D; Schümperli D; Leumann CJ
    Nucleic Acids Res; 2004; 32(1):346-53. PubMed ID: 14726483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.
    Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W
    PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational development of splice-modifying antisense oligomers.
    Fletcher S; Bellgard MI; Price L; Akkari AP; Wilton SD
    Expert Opin Biol Ther; 2017 Jan; 17(1):15-30. PubMed ID: 27805416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold?
    Guncay A; Yokota T
    Future Med Chem; 2015; 7(13):1631-5. PubMed ID: 26423833
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.