These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3161446)

  • 1. Cholecystokinin content in the basal ganglia in Huntington's disease. The expression of cholecystokinin immunoreactivity in striatal grafts to ibotenic acid-lesioned rat striatum.
    Emson PC; Dawbarn D; Rossor MN; Rehfeld JF; Brundin P; Isacson O; Björklund A
    Ann N Y Acad Sci; 1985; 448():488-94. PubMed ID: 3161446
    [No Abstract]   [Full Text] [Related]  

  • 2. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum.
    Isacson O; Brundin P; Kelly PA; Gage FH; Björklund A
    Nature; 1984 Oct 4-10; 311(5985):458-60. PubMed ID: 6482962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitotoxin lesions do not mimic the alteration of somatostatin in Huntington's disease.
    Beal MF; Marshall PE; Burd GD; Landis DM; Martin JB
    Brain Res; 1985 Dec; 361(1-2):135-45. PubMed ID: 2867808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntington's disease.
    Emson PC; Rehfeld JF; Langevin H; Rossor M
    Brain Res; 1980 Oct; 198(2):497-500. PubMed ID: 6447532
    [No Abstract]   [Full Text] [Related]  

  • 6. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease.
    Tattersfield AS; Croon RJ; Liu YW; Kells AP; Faull RL; Connor B
    Neuroscience; 2004; 127(2):319-32. PubMed ID: 15262322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striatal ganglioside levels in the rat following kainic acid lesions: comparison with Huntington's disease.
    Higatsberger MR; Sperk G; Bernheimer H; Shannak KS; Hornykiewicz O
    Exp Brain Res; 1981; 44(1):93-6. PubMed ID: 6456150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholecystokinin receptors are decreased in basal ganglia and cerebral cortex of Huntington's disease.
    Hays SE; Goodwin FK; Paul SM
    Brain Res; 1981 Nov; 225(2):452-6. PubMed ID: 6272931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A primate model of Huntington's disease: cross-species implantation of striatal precursor cells to the excitotoxically lesioned baboon caudate-putamen.
    Isacson O; Riche D; Hantraye P; Sofroniew MV; Maziere M
    Exp Brain Res; 1989; 75(1):213-20. PubMed ID: 2523313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits induced by quinolinic acid lesion to the striatum in a position discrimination and reversal task are ameliorated by permanent and temporary lesion to the globus pallidus: a potential novel treatment in a rat model of Huntington's disease.
    Joel D; Ayalon L; Tarrasch R; Weiner I
    Mov Disord; 2003 Dec; 18(12):1499-507. PubMed ID: 14673887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graft-induced behavioral recovery in an animal model of Huntington disease.
    Isacson O; Dunnett SB; Björklund A
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2728-32. PubMed ID: 2939457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [3H]Ro5-4864 benzodiazepine binding in the kainate lesioned striatum and Huntington's diseased basal ganglia.
    Schoemaker H; Morelli M; Deshmukh P; Yamamura HI
    Brain Res; 1982 Sep; 248(2):396-401. PubMed ID: 6291702
    [No Abstract]   [Full Text] [Related]  

  • 13. Human fetal striatal transplantation in an excitotoxic lesioned model of Huntington's disease.
    Sanberg PR; Borlongan CV; Koutouzis TK; Norgren RB; Cahill DW; Freeman TB
    Ann N Y Acad Sci; 1997 Dec; 831():452-60. PubMed ID: 9616734
    [No Abstract]   [Full Text] [Related]  

  • 14. Cholecystokinin in intracerebral transplants.
    Schultzberg M
    Ann N Y Acad Sci; 1985; 448():99-109. PubMed ID: 2862833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatostatin is increased in the nucleus accumbens in Huntington's disease.
    Beal MF; Bird ED; Langlais PJ; Martin JB
    Neurology; 1984 May; 34(5):663-6. PubMed ID: 6143284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional distribution of monoamines in the corpus striatum of the rat.
    Broch OJ; Marsden CA
    Brain Res; 1972 Mar; 38(2):425-8. PubMed ID: 5028538
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention.
    Watts C; Dunnett SB
    J Neurosurg; 1998 Aug; 89(2):267-74. PubMed ID: 9688122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular localisation of neurotransmitter mRNAs in striatal grafts.
    Sirinathsinghji DJ; Wisden W; Northrop A; Hunt SP; Dunnett SB; Morris BJ
    Prog Brain Res; 1990; 82():433-9. PubMed ID: 1981279
    [No Abstract]   [Full Text] [Related]  

  • 19. Letter: Dopamine and Huntington's chorea.
    Barbeau A; Ando K
    Lancet; 1975 Apr; 1(7913):987. PubMed ID: 48169
    [No Abstract]   [Full Text] [Related]  

  • 20. Paucity of P-zones in striatal grafts prohibit commencement of clinical trials in Huntington's disease.
    Brundin P; Fricker RA; Nakao N
    Neuroscience; 1996 Apr; 71(3):895-97. PubMed ID: 8867057
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.