These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31614686)

  • 1. Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network.
    Hu B; Wang H; Yu Z
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug combinatorics and side effect estimation on the signed human drug-target network.
    Torres NB; Altafini C
    BMC Syst Biol; 2016 Aug; 10(1):74. PubMed ID: 27526853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach.
    Hu B; Wang H; Wang L; Yuan W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARWAR: A network approach for predicting Adverse Drug Reactions.
    Rahmani H; Weiss G; Méndez-Lucio O; Bender A
    Comput Biol Med; 2016 Jan; 68():101-8. PubMed ID: 26638149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods.
    Yan XY; Zhang SW; He CR
    Comput Biol Chem; 2019 Feb; 78():460-467. PubMed ID: 30528728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of drug-target interactions from multi-molecular network based on LINE network representation method.
    Ji BY; You ZH; Jiang HJ; Guo ZH; Zheng K
    J Transl Med; 2020 Sep; 18(1):347. PubMed ID: 32894154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network.
    Xu X; Xuan P; Zhang T; Chen B; Sheng N
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2294-2304. PubMed ID: 33729947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.
    Zhang W; Chen Y; Liu F; Luo F; Tian G; Li X
    BMC Bioinformatics; 2017 Jan; 18(1):18. PubMed ID: 28056782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Explainable Framework for Predicting Drug-Side Effect Associations via Meta-Path-Based Feature Learning in Heterogeneous Information Network.
    Zhao W; Yao W; Jiang X; He T; Shi C; Hu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3635-3647. PubMed ID: 37616131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-target interaction prediction via class imbalance-aware ensemble learning.
    Ezzat A; Wu M; Li XL; Kwoh CK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug side-effect prediction based on the integration of chemical and biological spaces.
    Yamanishi Y; Pauwels E; Kotera M
    J Chem Inf Model; 2012 Dec; 52(12):3284-92. PubMed ID: 23157436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
    Zhang W; Yue X; Liu F; Chen Y; Tu S; Zhang X
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):101. PubMed ID: 29297371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of drug side effects with transductive matrix co-completion.
    Liang X; Fu Y; Qu L; Zhang P; Chen Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.
    Yu H; Mao KT; Shi JY; Huang H; Chen Z; Dong K; Yiu SM
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):14. PubMed ID: 29671393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic.
    Fakhraei S; Huang B; Raschid L; Getoor L
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):775-87. PubMed ID: 26356852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.