BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31614763)

  • 1. 3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels.
    Cai S; Shi H; Li G; Xue Q; Zhao L; Wang F; Hu B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31614763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design.
    Borro BC; Bohr A; Bucciarelli S; Boetker JP; Foged C; Rantanen J; Malmsten M
    J Colloid Interface Sci; 2019 Mar; 538():559-568. PubMed ID: 30551068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of letrozole-loaded alginate oxide-gelatin microgels using microfluidic systems for drug delivery applications.
    Mehraji S; Saadatmand M; Eskandari M
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):129685. PubMed ID: 38394762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy.
    Shao F; Yu L; Zhang Y; An C; Zhang H; Zhang Y; Xiong Y; Wang H
    Front Bioeng Biotechnol; 2020; 8():583065. PubMed ID: 33154965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation.
    Correa SO; Luo X; Raub CB
    J Micromech Microeng; 2020 Aug; 30(8):. PubMed ID: 37273664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pump-Free Strategy for the Controllable Generation of Alginate Microgels as Cellular Microcarriers.
    Qin X; Gan Z; Liu H; Tao T; He J; Li X; Shang D; Li X; Xie F; Qin J
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3958-3967. PubMed ID: 38711418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Encapsulation of Pickering Oil Microdroplets into Alginate Microgels for Lipophilic Compound Delivery.
    Marquis M; Alix V; Capron I; Cuenot S; Zykwinska A
    ACS Biomater Sci Eng; 2016 Apr; 2(4):535-543. PubMed ID: 33465857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic generation of alginate microgels for the controlled delivery of lentivectors.
    Madrigal JL; Stilhano RS; Siltanen C; Tanaka K; Rezvani SN; Morgan RP; Revzin A; Han SW; Silva EA
    J Mater Chem B; 2016 Nov; 4(43):6989-6999. PubMed ID: 32263565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing Enabled Customization of Functional Microgels.
    Liu X; Tao J; Liu J; Xu X; Zhang J; Huang Y; Chen Y; Zhang J; Deng DYB; Gou M; Wei Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12209-12215. PubMed ID: 30860353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic on-chip production of microgels using combined geometries.
    Shieh H; Saadatmand M; Eskandari M; Bastani D
    Sci Rep; 2021 Jan; 11(1):1565. PubMed ID: 33452407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.
    Madrigal JL; Sharma SN; Campbell KT; Stilhano RS; Gijsbers R; Silva EA
    Acta Biomater; 2018 Mar; 69():265-276. PubMed ID: 29398644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Submicron CaCO
    Reznik I; Kolesova E; Pestereva A; Baranov K; Osin Y; Bogdanov K; Swart J; Moshkalev S; Orlova A
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic production of degradable thermoresponsive poly(N-isopropylacrylamide)-based microgels.
    Sivakumaran D; Mueller E; Hoare T
    Soft Matter; 2017 Dec; 13(47):9060-9070. PubMed ID: 29177347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic On-Chip Production of Alginate Hydrogels Using Double Coflow Geometry.
    Sattari A; Janfaza S; Mashhadi Keshtiban M; Tasnim N; Hanafizadeh P; Hoorfar M
    ACS Omega; 2021 Oct; 6(40):25964-25971. PubMed ID: 34660958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Characterization of Hydrogel Droplets Containing Magnetic Nano Particles, in a Microfluidic Flow-Focusing Chip.
    Moharramzadeh F; Seyyed Ebrahimi SA; Zarghami V; Lalegani Z; Hamawandi B
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation and release of egg white protein in alginate microgels: Impact of pH and thermal treatment.
    Su Y; Gu L; Zhang Z; Chang C; Li J; McClements DJ; Yang Y
    Food Res Int; 2019 Jun; 120():305-311. PubMed ID: 31000243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Templating of Spatially Inhomogeneous Protein Microgels.
    Xu Y; Jacquat RPB; Shen Y; Vigolo D; Morse D; Zhang S; Knowles TPJ
    Small; 2020 Aug; 16(32):e2000432. PubMed ID: 32529798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentalized Jet Polymerization as a High-Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness.
    Krüger AJD; Bakirman O; Guerzoni LPB; Jans A; Gehlen DB; Rommel D; Haraszti T; Kuehne AJC; De Laporte L
    Adv Mater; 2019 Dec; 31(49):e1903668. PubMed ID: 31621960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.