BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31614811)

  • 1. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.
    Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators.
    Glowinski S; Krzyzynski T; Bryndal A; Maciejewski I
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blending control method of lower limb exoskeleton toward tripping-free stair climbing.
    Zhang ZW; Liu GF; Zheng TJ; Li HW; Zhao SK; Zhao J; Zhu YH
    ISA Trans; 2022 Dec; 131():610-627. PubMed ID: 35697540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Contact Behavior During Assisted Walking With a Lower Limb Exoskeleton.
    Wan X; Liu Y; Akiyama Y; Yamada Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):869-877. PubMed ID: 32167901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tripping Avoidance Lower Extremity Exoskeleton Based on Virtual Potential Field for Elderly People.
    Zhang Z; Li C; Zheng T; Li H; Zhao S; Zhao J; Zhu Y
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients.
    Ma Q; Ji L; Wang R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Terrains Assistive Force Parameter Optimization Method for Soft Exoskeleton.
    Sun L; Jing J; Li C; Lu R
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2028-2036. PubMed ID: 37053053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton.
    Cao W; Ma Y; Chen C; Zhang J; Wu X
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):384-394. PubMed ID: 35536795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brief biomechanical analysis on the walking of spinal cord injury patients with a lower limb exoskeleton robot.
    Jung JY; Park H; Yang HD; Chae M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650351. PubMed ID: 24187170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.