These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 31614855)

  • 1. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite.
    Huang L; Gan X; Yu B; Zhang H; Li S; Cheng J; Liang X; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System.
    Gan X; Yu B; Huang L; Jia R; Zhang H; Sheng C; Fan G; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments.
    Zhu R; Wang Y; Cao H; Yu B; Gan X; Huang L; Zhang H; Li S; Jia H; Chen J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise Point Positioning Algorithm for Pseudolite Combined with GNSS in a Constrained Observation Environment.
    Sheng C; Gan X; Yu B; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization.
    Zhao Y; Zhang P; Guo J; Li X; Wang J; Yang F; Wang X
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29925816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Method for Single-Epoch Ambiguity Resolution with Indoor Pseudolite Positioning.
    Li X; Zhang P; Guo J; Wang J; Qiu W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28430146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable Indoor Pseudolite Positioning Based on a Robust Estimation and Partial Ambiguity Resolution Method.
    Li X; Huang G; Zhang P; Zhang Q
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach.
    Liu M; Chen R; Li D; Chen Y; Guo G; Cao Z; Pan Y
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29292761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization.
    Fujii K; Sakamoto Y; Wang W; Arie H; Schmitz A; Sugano S
    Sensors (Basel); 2015 Sep; 15(10):25157-75. PubMed ID: 26437405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of Smartphone MEMS Sensors and Environmental Prior Information for Pedestrian Indoor Positioning.
    Huang L; Li H; Yu B; Gan X; Wang B; Li Y; Zhu R
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Indoor Positioning System Architecture Using GPS Signals.
    Xu R; Chen W; Xu Y; Ji S
    Sensors (Basel); 2015 Apr; 15(5):10074-87. PubMed ID: 25938199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic ME-MAFA for Pseudolite Carrier-Phase Ambiguity Resolution in Precise Single-Point Positioning.
    Liu K; Guo X; Yang J; Li X; Liu C; Tang Y; Meng Z; Yan E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPIPS: A High-Precision Indoor Pedestrian Positioning System Fusing WiFi-RTT, MEMS, and Map Information.
    Huang L; Yu B; Li H; Zhang H; Li S; Zhu R; Li Y
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pseudolite-based positioning system for legacy GNSS receivers.
    Kim C; So H; Lee T; Kee C
    Sensors (Basel); 2014 Mar; 14(4):6104-23. PubMed ID: 24681674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Hybrid Dual Radio Frequency RSSI (HDRF-RSSI) Fingerprint Database and Indoor Location Method.
    Sun H; Zhu X; Liu Y; Liu W
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Signals of Opportunity Fingerprint Database Maintenance with Autonomous Unmanned Ground Vehicle for Indoor Positioning.
    Peng Y; Niu X; Tang J; Mao D; Qian C
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Enhanced Indoor Positioning Algorithm Based on Fingerprint Using Fine-Grained CSI and RSSI Measurements of IEEE 802.11n WLAN.
    Wang J; Park J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization.
    Hao Z; Yan Y; Dang X; Shao C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Indoor 3D Positioning Algorithm Based on WiFi Fingerprint.
    Wang L; Shang S; Wu Z
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor Positioning Using Magnetic Fingerprint Map Captured by Magnetic Sensor Array.
    Chen CH; Chen PW; Chen PJ; Liu TH
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.