BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 31614877)

  • 1. Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4
    Saleh R; Toor SM; Khalaf S; Elkord E
    Vaccines (Basel); 2019 Oct; 7(4):. PubMed ID: 31614877
    [No Abstract]   [Full Text] [Related]  

  • 2. Immune Checkpoints in Circulating and Tumor-Infiltrating CD4
    Toor SM; Murshed K; Al-Dhaheri M; Khawar M; Abu Nada M; Elkord E
    Front Immunol; 2019; 10():2936. PubMed ID: 31921188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations between Circulating and Tumor-Infiltrating CD4
    Al-Mterin MA; Murshed K; Elkord E
    Vaccines (Basel); 2022 Mar; 10(4):. PubMed ID: 35455287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer.
    Zhang L; Wang XI; Ding J; Sun Q; Zhang S
    Ann Diagn Pathol; 2019 Jun; 40():143-151. PubMed ID: 31096176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of PD-1, PD-L1, and TIM-3 Altered Distinct Immune- and Cancer-Related Signaling Pathways in the Transcriptome of Human Breast Cancer Explants.
    Saleh R; Toor SM; Al-Ali D; Sasidharan Nair V; Elkord E
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32616706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stromal PD-L1-Positive Regulatory T cells and PD-1-Positive CD8-Positive T cells Define the Response of Different Subsets of Non-Small Cell Lung Cancer to PD-1/PD-L1 Blockade Immunotherapy.
    Wu SP; Liao RQ; Tu HY; Wang WJ; Dong ZY; Huang SM; Guo WB; Gou LY; Sun HW; Zhang Q; Xie Z; Yan LX; Su J; Yang JJ; Zhong WZ; Zhang XC; Wu YL
    J Thorac Oncol; 2018 Apr; 13(4):521-532. PubMed ID: 29269008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human umbilical vein endothelial cells promote the inhibitory activation of CD4(+)CD25(+)Foxp3(+) regulatory T cells via PD-L1.
    Chen WJ; Hu XF; Yan M; Zhang WY; Mao XB; Shu YW
    Atherosclerosis; 2016 Jan; 244():108-12. PubMed ID: 26615520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion.
    Bruss C; Kellner K; Albert V; Hutchinson JA; Seitz S; Ortmann O; Brockhoff G; Wege AK
    Cancers (Basel); 2023 May; 15(9):. PubMed ID: 37174080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations of different immune checkpoints-expressing CD4
    Al-Mterin MA; Murshed K; Alsalman A; Abu-Dayeh A; Elkord E
    BMC Cancer; 2022 Jun; 22(1):601. PubMed ID: 35655158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses.
    Chen X; Pan X; Zhang W; Guo H; Cheng S; He Q; Yang B; Ding L
    Acta Pharm Sin B; 2020 May; 10(5):723-733. PubMed ID: 32528824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between Circulating and Tumor-Infiltrating CD4
    Al-Mterin MA; Murshed K; Elkord E
    Vaccines (Basel); 2022 Sep; 10(9):. PubMed ID: 36146549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atezolizumab potentiates Tcell-mediated cytotoxicity and coordinates with FAK to suppress cell invasion and motility in PD-L1
    Mohan N; Hosain S; Zhao J; Shen Y; Luo X; Jiang J; Endo Y; Wu WJ
    Oncoimmunology; 2019; 8(9):e1624128. PubMed ID: 31428520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Search for an Interesting Partner to Combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3.
    Marcq E; Van Audenaerde JRM; De Waele J; Merlin C; Pauwels P; van Meerbeeck JP; Fisher SA; Smits ELJ
    Cancers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of PD-1 blockade in cervical cancer is related to a CD8
    Heeren AM; Rotman J; Stam AGM; Pocorni N; Gassama AA; Samuels S; Bleeker MCG; Mom CH; Zijlmans HJMAA; Kenter GG; Jordanova ES; de Gruijl TD
    J Immunother Cancer; 2019 Feb; 7(1):43. PubMed ID: 30755279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition.
    Kreidieh FY; Tawbi HA
    Ther Adv Med Oncol; 2023; 15():17588359231186027. PubMed ID: 37484526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro effect of pembrolizumab on different T regulatory cell subsets.
    Toor SM; Syed Khaja AS; Alkurd I; Elkord E
    Clin Exp Immunol; 2018 Feb; 191(2):189-197. PubMed ID: 28963773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune checkpoint inhibitors: breakthroughs in cancer treatment.
    Kong X; Zhang J; Chen S; Wang X; Xi Q; Shen H; Zhang R
    Cancer Biol Med; 2024 May; ():. PubMed ID: 38801082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer.
    Chen X; Feng L; Huang Y; Wu Y; Xie N
    Cancers (Basel); 2022 Dec; 15(1):. PubMed ID: 36612100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of selenium on regulatory T cell frequency and immune checkpoint receptor expression in patients with diffuse large B cell lymphoma (DLBCL).
    Dehghani M; Shokrgozar N; Ramzi M; Kalani M; Golmoghaddam H; Arandi N
    Cancer Immunol Immunother; 2021 Oct; 70(10):2961-2969. PubMed ID: 33721055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.