These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 31615048)

  • 1. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pilot Study of Varying Thoracic and Abdominal Compression in a Reconfigurable Trunk Exoskeleton During Different Activities.
    Gorsic M; Regmi Y; Johnson AP; Dai B; Novak D
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1585-1594. PubMed ID: 31502962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Method of Detecting Human Movement Intentions in Real Environments.
    Liu YX; Wan ZY; Wang R; Gutierrez-Farewik EM
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Embedded Electromyogram Signal Acquisition Device.
    Lu C; Xu X; Liu Y; Li D; Wang Y; Xian W; Chen C; Wei B; Tian J
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Evaluation of a Knee Exoskeleton Misalignment Compensation Mechanism Using a Robotic Dummy Leg.
    Massardi S; Rodriguez-Cianca D; Cenciarini M; Costa DC; Font-Llagunes JM; Moreno JC; Lancini M; Torricelli D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Soft Exoskeleton Glove for Hand Bilateral Training via Surface EMG.
    Chen Y; Yang Z; Wen Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator.
    Lee T; Lee D; Song B; Baek YS
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an EMG-Controlled Knee Exoskeleton to Assist Home Rehabilitation in a Game Context.
    Lyu M; Chen WH; Ding X; Wang J; Pei Z; Zhang B
    Front Neurorobot; 2019; 13():67. PubMed ID: 31507400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity Segmentation Using Wearable Sensors for DVT/PE Risk Detection.
    Gentry A; Mongan WM; Lee B; Montgomery O; Dandekar KR
    Proc COMPSAC; 2019 Jul; 2019():477-483. PubMed ID: 33594351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a Bio-Inspired Gait Phase Decoder Based on Temporal Convolution Network Architecture With Contralateral Surface Electromyography Toward Hip Prosthesis Control.
    Chen Y; Li X; Su H; Zhang D; Yu H
    Front Neurorobot; 2022; 16():791169. PubMed ID: 35615341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Recognition for Lower Limb Exoskeletons Based on Interactive Information Fusion.
    Chen W; Li J; Zhu S; Zhang X; Men Y; Wu H
    Appl Bionics Biomech; 2022; 2022():9933018. PubMed ID: 35378794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensors and Actuation Technologies in Exoskeletons: A Review.
    Tiboni M; Borboni A; Vérité F; Bregoli C; Amici C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Single Leg Knee Exoskeleton and Sensing Knee Center of Rotation Change for Intention Detection.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling a Lower-Leg Exoskeleton Using Voltage and Current Variation Signals of a DC Motor Mounted at the Knee Joint.
    Al-Ayyad M; Moh'd BA; Qasem N; Al-Takrori M
    J Med Syst; 2019 Jun; 43(7):229. PubMed ID: 31197587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of electromyography onset detection methods for real-time control of robotic exoskeletons.
    Carvalho CR; Fernández JM; Del-Ama AJ; Oliveira Barroso F; Moreno JC
    J Neuroeng Rehabil; 2023 Oct; 20(1):141. PubMed ID: 37872633
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.