These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 31615049)
1. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field. Xu H; Pan Y Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049 [TBL] [Abstract][Full Text] [Related]
2. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature. Yu J; Cao C; Fang F; Pan Y Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409372 [TBL] [Abstract][Full Text] [Related]
4. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia. Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203 [TBL] [Abstract][Full Text] [Related]
5. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Shaterabadi Z; Nabiyouni G; Soleymani M Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638 [TBL] [Abstract][Full Text] [Related]
6. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance. Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690 [TBL] [Abstract][Full Text] [Related]
7. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414 [TBL] [Abstract][Full Text] [Related]
8. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Soetaert F; Kandala SK; Bakuzis A; Ivkov R Sci Rep; 2017 Jul; 7(1):6661. PubMed ID: 28751720 [TBL] [Abstract][Full Text] [Related]
9. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis. Piao D; Towner RA; Smith N; Chen WR Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611 [TBL] [Abstract][Full Text] [Related]
10. Maghemite (γ-Fe Lemine OM; Madkhali N; Alshammari M; Algessair S; Gismelseed A; El Mir L; Hjiri M; Yousif AA; El-Boubbou K Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640088 [TBL] [Abstract][Full Text] [Related]
11. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
12. Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance. Zhang L; Liu Z; Liu Y; Wang Y; Tang P; Wu Y; Huang H; Gan Z; Liu J; Wu D Biomaterials; 2020 Feb; 230():119655. PubMed ID: 31812276 [TBL] [Abstract][Full Text] [Related]
13. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
14. Adjusting the Néel relaxation time of Fe Fabris F; Lohr J; Lima E; de Almeida AA; Troiani HE; Rodríguez LM; Vásquez Mansilla M; Aguirre MH; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler EL Nanotechnology; 2020 Nov; 32(6):065703. PubMed ID: 33210620 [TBL] [Abstract][Full Text] [Related]
15. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509 [TBL] [Abstract][Full Text] [Related]
16. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy. Caizer IS; Caizer C Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457167 [TBL] [Abstract][Full Text] [Related]
17. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Kossatz S; Ludwig R; Dähring H; Ettelt V; Rimkus G; Marciello M; Salas G; Patel V; Teran FJ; Hilger I Pharm Res; 2014 Dec; 31(12):3274-88. PubMed ID: 24890197 [TBL] [Abstract][Full Text] [Related]
18. Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery Nanoparticles Using Fluorescence Depolarization. Lin FC; Zink JI J Am Chem Soc; 2020 Mar; 142(11):5212-5220. PubMed ID: 32091888 [TBL] [Abstract][Full Text] [Related]
19. The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications. Nguyen LH; Phong PT; Nam PH; Manh DH; Thanh NTK; Tung LD; Phuc NX Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918815 [TBL] [Abstract][Full Text] [Related]
20. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]