BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31615049)

  • 21. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.
    Khandhar AP; Ferguson RM; Krishnan KM
    J Appl Phys; 2011 Apr; 109(7):7B310-7B3103. PubMed ID: 21523253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids.
    Jeun M; Kim YJ; Park KH; Paek SH; Bae S
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5719-25. PubMed ID: 23882824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.
    Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors.
    Mues B; Bauer B; Roeth AA; Ortega J; Buhl EM; Radon P; Wiekhorst F; Gries T; Schmitz-Rode T; Slabu I
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33801426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles.
    Cervadoro A; Giverso C; Pande R; Sarangi S; Preziosi L; Wosik J; Brazdeikis A; Decuzzi P
    PLoS One; 2013; 8(2):e57332. PubMed ID: 23451208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.
    Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL
    Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.
    Khandhar AP; Ferguson RM; Simon JA; Krishnan KM
    J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency.
    Gonçalves J; Nunes C; Ferreira L; Cruz MM; Oliveira H; Bastos V; Mayoral Á; Zhang Q; Ferreira P
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies.
    Khanal S; Sanna Angotzi M; Mameli V; Veverka M; Xin HL; Cannas C; Vejpravová J
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictions of optimal heating by magnetic reversal behavior of magnetic nanowires (MNWs) with different materials.
    Chen Y; Stadler BJH
    Int J Hyperthermia; 2023; 40(1):2223371. PubMed ID: 37357335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.
    Ruggiero MR; Crich SG; Sieni E; Sgarbossa P; Forzan M; Cavallari E; Stefania R; Dughiero F; Aime S
    Nanotechnology; 2016 Jul; 27(28):285104. PubMed ID: 27265726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative thermo-brachytherapy.
    van Oossanen R; Maier A; Godart J; Pignol JP; Denkova AG; van Rhoon GC; Djanashvili K
    Int J Hyperthermia; 2024; 41(1):2299480. PubMed ID: 38189281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α
    Del Sol-Fernández S; Portilla-Tundidor Y; Gutiérrez L; Odio OF; Reguera E; Barber DF; Morales MP
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26648-26663. PubMed ID: 31287950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.
    Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS
    J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles.
    Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F
    J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fe
    Caizer C; Caizer IS; Racoviceanu R; Watz CG; Mioc M; Dehelean CA; Bratu T; Soica C
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.
    Motoyama J; Hakata T; Kato R; Yamashita N; Morino T; Kobayashi T; Honda H
    Biomagn Res Technol; 2008 Oct; 6():4. PubMed ID: 18928573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.