These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 31615049)
21. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. Khandhar AP; Ferguson RM; Krishnan KM J Appl Phys; 2011 Apr; 109(7):7B310-7B3103. PubMed ID: 21523253 [TBL] [Abstract][Full Text] [Related]
22. Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids. Jeun M; Kim YJ; Park KH; Paek SH; Bae S J Nanosci Nanotechnol; 2013 Aug; 13(8):5719-25. PubMed ID: 23882824 [TBL] [Abstract][Full Text] [Related]
23. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Shaterabadi Z; Nabiyouni G; Soleymani M Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133 [TBL] [Abstract][Full Text] [Related]
24. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734 [TBL] [Abstract][Full Text] [Related]
25. Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. Mues B; Bauer B; Roeth AA; Ortega J; Buhl EM; Radon P; Wiekhorst F; Gries T; Schmitz-Rode T; Slabu I Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33801426 [TBL] [Abstract][Full Text] [Related]
26. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. Cervadoro A; Giverso C; Pande R; Sarangi S; Preziosi L; Wosik J; Brazdeikis A; Decuzzi P PLoS One; 2013; 8(2):e57332. PubMed ID: 23451208 [TBL] [Abstract][Full Text] [Related]
27. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
28. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles. Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920 [TBL] [Abstract][Full Text] [Related]
29. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. Khandhar AP; Ferguson RM; Simon JA; Krishnan KM J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652 [TBL] [Abstract][Full Text] [Related]
30. Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency. Gonçalves J; Nunes C; Ferreira L; Cruz MM; Oliveira H; Bastos V; Mayoral Á; Zhang Q; Ferreira P Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835704 [TBL] [Abstract][Full Text] [Related]
31. Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies. Khanal S; Sanna Angotzi M; Mameli V; Veverka M; Xin HL; Cannas C; Vejpravová J Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835613 [TBL] [Abstract][Full Text] [Related]
32. Predictions of optimal heating by magnetic reversal behavior of magnetic nanowires (MNWs) with different materials. Chen Y; Stadler BJH Int J Hyperthermia; 2023; 40(1):2223371. PubMed ID: 37357335 [TBL] [Abstract][Full Text] [Related]
33. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles. Ruggiero MR; Crich SG; Sieni E; Sgarbossa P; Forzan M; Cavallari E; Stefania R; Dughiero F; Aime S Nanotechnology; 2016 Jul; 27(28):285104. PubMed ID: 27265726 [TBL] [Abstract][Full Text] [Related]
34. Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative thermo-brachytherapy. van Oossanen R; Maier A; Godart J; Pignol JP; Denkova AG; van Rhoon GC; Djanashvili K Int J Hyperthermia; 2024; 41(1):2299480. PubMed ID: 38189281 [TBL] [Abstract][Full Text] [Related]
35. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation. Chen W; Cheng CA; Zink JI ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500 [TBL] [Abstract][Full Text] [Related]
36. Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α Del Sol-Fernández S; Portilla-Tundidor Y; Gutiérrez L; Odio OF; Reguera E; Barber DF; Morales MP ACS Appl Mater Interfaces; 2019 Jul; 11(30):26648-26663. PubMed ID: 31287950 [TBL] [Abstract][Full Text] [Related]
37. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599 [TBL] [Abstract][Full Text] [Related]
38. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles. Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262 [TBL] [Abstract][Full Text] [Related]
39. Fe Caizer C; Caizer IS; Racoviceanu R; Watz CG; Mioc M; Dehelean CA; Bratu T; Soica C Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957011 [TBL] [Abstract][Full Text] [Related]
40. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy. Motoyama J; Hakata T; Kato R; Yamashita N; Morino T; Kobayashi T; Honda H Biomagn Res Technol; 2008 Oct; 6():4. PubMed ID: 18928573 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]