These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. MiR-27a is Essential for the Shift from Osteogenic Differentiation to Adipogenic Differentiation of Mesenchymal Stem Cells in Postmenopausal Osteoporosis. You L; Pan L; Chen L; Gu W; Chen J Cell Physiol Biochem; 2016; 39(1):253-65. PubMed ID: 27337099 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Baglìo SR; Devescovi V; Granchi D; Baldini N Gene; 2013 Sep; 527(1):321-31. PubMed ID: 23827457 [TBL] [Abstract][Full Text] [Related]
6. High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation. de Souza Lima IM; Schiavinato JLDS; Paulino Leite SB; Sastre D; Bezerra HLO; Sangiorgi B; Corveloni AC; Thomé CH; Faça VM; Covas DT; Zago MA; Giacca M; Mano M; Panepucci RA Stem Cell Res Ther; 2019 Jul; 10(1):202. PubMed ID: 31287022 [TBL] [Abstract][Full Text] [Related]
7. OCT4 Silencing Triggers Its Epigenetic Repression and Impairs the Osteogenic and Adipogenic Differentiation of Mesenchymal Stromal Cells. Malvicini R; Santa-Cruz D; Pacienza N; Yannarelli G Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277213 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. Gao J; Yang T; Han J; Yan K; Qiu X; Zhou Y; Fan Q; Ma B J Cell Biochem; 2011 Jul; 112(7):1844-56. PubMed ID: 21416501 [TBL] [Abstract][Full Text] [Related]
9. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells. Sepulveda H; Aguilar R; Prieto CP; Bustos F; Aedo S; Lattus J; van Zundert B; Palma V; Montecino M J Cell Physiol; 2017 Sep; 232(9):2519-2527. PubMed ID: 27689934 [TBL] [Abstract][Full Text] [Related]
10. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
11. Altered expression of microRNAs in the neuronal differentiation of human Wharton's Jelly mesenchymal stem cells. Zhuang H; Zhang R; Zhang S; Shu Q; Zhang D; Xu G Neurosci Lett; 2015 Jul; 600():69-74. PubMed ID: 26049006 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911 [TBL] [Abstract][Full Text] [Related]
13. Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Gunaratne PH Curr Stem Cell Res Ther; 2009 Sep; 4(3):168-77. PubMed ID: 19492978 [TBL] [Abstract][Full Text] [Related]
14. MiR-148a promotes myocardial differentiation of human bone mesenchymal stromal cells via DNA methyltransferase 1 (DNMT1). Jiang C; Gong F Cell Biol Int; 2018 Aug; 42(8):913-922. PubMed ID: 28656724 [TBL] [Abstract][Full Text] [Related]
15. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Kim MJ; Shin KS; Jeon JH; Lee DR; Shim SH; Kim JK; Cha DH; Yoon TK; Kim GJ Cell Tissue Res; 2011 Oct; 346(1):53-64. PubMed ID: 21987220 [TBL] [Abstract][Full Text] [Related]
16. Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells. Di Stefano AB; Grisafi F; Castiglia M; Perez A; Montesano L; Gulino A; Toia F; Fanale D; Russo A; Moschella F; Leto Barone AA; Cordova A J Cell Physiol; 2018 Nov; 233(11):8778-8789. PubMed ID: 29797571 [TBL] [Abstract][Full Text] [Related]
17. Molecular and Functional Verification of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) Pluripotency. Musiał-Wysocka A; Kot M; Sułkowski M; Badyra B; Majka M Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013696 [TBL] [Abstract][Full Text] [Related]
18. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193 [TBL] [Abstract][Full Text] [Related]