These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31615245)
1. Learning from the density to correct total energy and forces in first principle simulations. Dick S; Fernandez-Serra M J Chem Phys; 2019 Oct; 151(14):144102. PubMed ID: 31615245 [TBL] [Abstract][Full Text] [Related]
2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
3. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM J Cheminform; 2016; 8():24. PubMed ID: 27148408 [TBL] [Abstract][Full Text] [Related]
4. Subsystem Density Functional Theory Augmented by a Delta Learning Approach to Achieve Kohn-Sham Accuracy. Pauletti M; Rybkin VV; Iannuzzi M J Chem Theory Comput; 2021 Oct; 17(10):6423-6431. PubMed ID: 34505765 [TBL] [Abstract][Full Text] [Related]
5. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Balabin RM; Lomakina EI Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265 [TBL] [Abstract][Full Text] [Related]
6. Quantum chemical accuracy from density functional approximations via machine learning. Bogojeski M; Vogt-Maranto L; Tuckerman ME; Müller KR; Burke K Nat Commun; 2020 Oct; 11(1):5223. PubMed ID: 33067479 [TBL] [Abstract][Full Text] [Related]
7. A Differentiable Neural-Network Force Field for Ionic Liquids. Montes-Campos H; Carrete J; Bichelmaier S; Varela LM; Madsen GKH J Chem Inf Model; 2022 Jan; 62(1):88-101. PubMed ID: 34941253 [TBL] [Abstract][Full Text] [Related]
8. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach. Sun YY; Kim YH; Lee K; Zhang SB J Chem Phys; 2008 Oct; 129(15):154102. PubMed ID: 19045171 [TBL] [Abstract][Full Text] [Related]
10. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks. Sun G; Sautet P J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216 [TBL] [Abstract][Full Text] [Related]
11. Using a monomer potential energy surface to perform approximate path integral molecular dynamics simulation of ab initio water at near-zero added cost. Elton DC; Fritz M; Fernández-Serra M Phys Chem Chem Phys; 2018 Dec; 21(1):409-417. PubMed ID: 30534683 [TBL] [Abstract][Full Text] [Related]
12. Neural Network Force Fields for Metal Growth Based on Energy Decompositions. Hu Q; Weng M; Chen X; Li S; Pan F; Wang LW J Phys Chem Lett; 2020 Feb; 11(4):1364-1369. PubMed ID: 32000486 [TBL] [Abstract][Full Text] [Related]
13. A novel approach to describe chemical environments in high-dimensional neural network potentials. Kocer E; Mason JK; Erturk H J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation. Li H; Wang Z; Zou N; Ye M; Xu R; Gong X; Duan W; Xu Y Nat Comput Sci; 2022 Jun; 2(6):367-377. PubMed ID: 38177580 [TBL] [Abstract][Full Text] [Related]
15. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
16. Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Herbold M; Behler J Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873 [TBL] [Abstract][Full Text] [Related]
17. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features. Qiao Z; Welborn M; Anandkumar A; Manby FR; Miller TF J Chem Phys; 2020 Sep; 153(12):124111. PubMed ID: 33003742 [TBL] [Abstract][Full Text] [Related]
18. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation. Zhang Y; Hu C; Jiang B J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157 [TBL] [Abstract][Full Text] [Related]
19. Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential. Xu M; Zhu T; Zhang JZH J Phys Chem A; 2019 Aug; 123(30):6587-6595. PubMed ID: 31294560 [TBL] [Abstract][Full Text] [Related]
20. Improve the performance of machine-learning potentials by optimizing descriptors. Gao H; Wang J; Sun J J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]