BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31615352)

  • 21. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network.
    Fujioka T; Kubota K; Mori M; Kikuchi Y; Katsuta L; Kasahara M; Oda G; Ishiba T; Nakagawa T; Tateishi U
    Jpn J Radiol; 2019 Jun; 37(6):466-472. PubMed ID: 30888570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diagnostic performance of automated breast ultrasound as a replacement for a hand-held second-look ultrasound for breast lesions detected initially on magnetic resonance imaging.
    Chae EY; Shin HJ; Kim HJ; Yoo H; Baek S; Cha JH; Kim HH
    Ultrasound Med Biol; 2013 Dec; 39(12):2246-54. PubMed ID: 24035627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilizing size-based thresholds of stiffness gradient to reclassify BI-RADS category 3-4b lesions increases diagnostic performance.
    Shang J; Ruan LT; Wang YY; Zhang XJ; Dang Y; Liu B; Wang WL; Song Y; Chang SJ
    Clin Radiol; 2019 Apr; 74(4):306-313. PubMed ID: 30755314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semantic Segmentation of the Malignant Breast Imaging Reporting and Data System Lexicon on Breast Ultrasound Images by Using DeepLab v3.
    Shia WC; Hsu FR; Dai ST; Guo SL; Chen DR
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BUS-BRA: A breast ultrasound dataset for assessing computer-aided diagnosis systems.
    Gómez-Flores W; Gregorio-Calas MJ; Coelho de Albuquerque Pereira W
    Med Phys; 2024 Apr; 51(4):3110-3123. PubMed ID: 37937827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A case-oriented web-based training system for breast cancer diagnosis.
    Huang Q; Huang X; Liu L; Lin Y; Long X; Li X
    Comput Methods Programs Biomed; 2018 Mar; 156():73-83. PubMed ID: 29428078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.
    Aly GH; Marey M; El-Sayed SA; Tolba MF
    Comput Methods Programs Biomed; 2021 Mar; 200():105823. PubMed ID: 33190942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-aided tumor detection in automated breast ultrasound using a 3-D convolutional neural network.
    Moon WK; Huang YS; Hsu CH; Chang Chien TY; Chang JM; Lee SH; Huang CS; Chang RF
    Comput Methods Programs Biomed; 2020 Jul; 190():105360. PubMed ID: 32007838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EMD-DWT based transform domain feature reduction approach for quantitative multi-class classification of breast lesions.
    Ara SR; Bashar SK; Alam F; Hasan MK
    Ultrasonics; 2017 Sep; 80():22-33. PubMed ID: 28499122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection and classification the breast tumors using mask R-CNN on sonograms.
    Chiao JY; Chen KY; Liao KY; Hsieh PH; Zhang G; Huang TC
    Medicine (Baltimore); 2019 May; 98(19):e15200. PubMed ID: 31083152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Downgrading of Breast Masses Suspicious for Cancer by Using Optoacoustic Breast Imaging.
    Menezes GLG; Pijnappel RM; Meeuwis C; Bisschops R; Veltman J; Lavin PT; van de Vijver MJ; Mann RM
    Radiology; 2018 Aug; 288(2):355-365. PubMed ID: 29664342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonpalpable BI-RADS 4 breast lesions: sonographic findings and pathology correlation.
    Elverici E; Barça AN; Aktaş H; Özsoy A; Zengin B; Çavuşoğlu M; Araz L
    Diagn Interv Radiol; 2015; 21(3):189-94. PubMed ID: 25835079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Downgrading and Upgrading Gray-Scale Ultrasound BI-RADS Categories of Benign and Malignant Masses With Optoacoustics: A Pilot Study.
    Neuschler EI; Lavin PT; Tucker FL; Barke LD; Bertrand ML; Böhm-Vélez M; Destounis S; Dogan BE; Grobmyer SR; Katzen J; Kist KA; Makariou EV; Parris TM; Young CA; Butler R
    AJR Am J Roentgenol; 2018 Sep; 211(3):689-700. PubMed ID: 29975115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women.
    Vourtsis A; Kachulis A
    Eur Radiol; 2018 Feb; 28(2):592-601. PubMed ID: 28828640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning.
    Yu X; Wang H; Ma L
    Curr Med Imaging Rev; 2020; 16(2):174-180. PubMed ID: 32003318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using BI-RADS Stratifications as Auxiliary Information for Breast Masses Classification in Ultrasound Images.
    Xing J; Chen C; Lu Q; Cai X; Yu A; Xu Y; Xia X; Sun Y; Xiao J; Huang L
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):2058-2070. PubMed ID: 33119515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer-aided diagnosis system for breast ultrasound images using deep learning.
    Tanaka H; Chiu SW; Watanabe T; Kaoku S; Yamaguchi T
    Phys Med Biol; 2019 Dec; 64(23):235013. PubMed ID: 31645021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Task/Single-Task Joint Learning of Ultrasound BI-RADS Features.
    Huang Q; Ye L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):691-701. PubMed ID: 34871170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of contrast-enhanced ultrasound in the diagnosis of small breast lesions.
    Du YR; Wu Y; Chen M; Gu XG
    Clin Hemorheol Microcirc; 2018; 70(3):291-300. PubMed ID: 29710688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.