These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31615352)

  • 21. Utilizing size-based thresholds of stiffness gradient to reclassify BI-RADS category 3-4b lesions increases diagnostic performance.
    Shang J; Ruan LT; Wang YY; Zhang XJ; Dang Y; Liu B; Wang WL; Song Y; Chang SJ
    Clin Radiol; 2019 Apr; 74(4):306-313. PubMed ID: 30755314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semantic Segmentation of the Malignant Breast Imaging Reporting and Data System Lexicon on Breast Ultrasound Images by Using DeepLab v3.
    Shia WC; Hsu FR; Dai ST; Guo SL; Chen DR
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BUS-BRA: A breast ultrasound dataset for assessing computer-aided diagnosis systems.
    Gómez-Flores W; Gregorio-Calas MJ; Coelho de Albuquerque Pereira W
    Med Phys; 2024 Apr; 51(4):3110-3123. PubMed ID: 37937827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A case-oriented web-based training system for breast cancer diagnosis.
    Huang Q; Huang X; Liu L; Lin Y; Long X; Li X
    Comput Methods Programs Biomed; 2018 Mar; 156():73-83. PubMed ID: 29428078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.
    Aly GH; Marey M; El-Sayed SA; Tolba MF
    Comput Methods Programs Biomed; 2021 Mar; 200():105823. PubMed ID: 33190942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-aided tumor detection in automated breast ultrasound using a 3-D convolutional neural network.
    Moon WK; Huang YS; Hsu CH; Chang Chien TY; Chang JM; Lee SH; Huang CS; Chang RF
    Comput Methods Programs Biomed; 2020 Jul; 190():105360. PubMed ID: 32007838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMD-DWT based transform domain feature reduction approach for quantitative multi-class classification of breast lesions.
    Ara SR; Bashar SK; Alam F; Hasan MK
    Ultrasonics; 2017 Sep; 80():22-33. PubMed ID: 28499122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Downgrading of Breast Masses Suspicious for Cancer by Using Optoacoustic Breast Imaging.
    Menezes GLG; Pijnappel RM; Meeuwis C; Bisschops R; Veltman J; Lavin PT; van de Vijver MJ; Mann RM
    Radiology; 2018 Aug; 288(2):355-365. PubMed ID: 29664342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonpalpable BI-RADS 4 breast lesions: sonographic findings and pathology correlation.
    Elverici E; Barça AN; Aktaş H; Özsoy A; Zengin B; Çavuşoğlu M; Araz L
    Diagn Interv Radiol; 2015; 21(3):189-94. PubMed ID: 25835079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection and classification the breast tumors using mask R-CNN on sonograms.
    Chiao JY; Chen KY; Liao KY; Hsieh PH; Zhang G; Huang TC
    Medicine (Baltimore); 2019 May; 98(19):e15200. PubMed ID: 31083152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Downgrading and Upgrading Gray-Scale Ultrasound BI-RADS Categories of Benign and Malignant Masses With Optoacoustics: A Pilot Study.
    Neuschler EI; Lavin PT; Tucker FL; Barke LD; Bertrand ML; Böhm-Vélez M; Destounis S; Dogan BE; Grobmyer SR; Katzen J; Kist KA; Makariou EV; Parris TM; Young CA; Butler R
    AJR Am J Roentgenol; 2018 Sep; 211(3):689-700. PubMed ID: 29975115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women.
    Vourtsis A; Kachulis A
    Eur Radiol; 2018 Feb; 28(2):592-601. PubMed ID: 28828640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning.
    Yu X; Wang H; Ma L
    Curr Med Imaging Rev; 2020; 16(2):174-180. PubMed ID: 32003318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using BI-RADS Stratifications as Auxiliary Information for Breast Masses Classification in Ultrasound Images.
    Xing J; Chen C; Lu Q; Cai X; Yu A; Xu Y; Xia X; Sun Y; Xiao J; Huang L
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):2058-2070. PubMed ID: 33119515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer-aided diagnosis system for breast ultrasound images using deep learning.
    Tanaka H; Chiu SW; Watanabe T; Kaoku S; Yamaguchi T
    Phys Med Biol; 2019 Dec; 64(23):235013. PubMed ID: 31645021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-Task/Single-Task Joint Learning of Ultrasound BI-RADS Features.
    Huang Q; Ye L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):691-701. PubMed ID: 34871170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of contrast-enhanced ultrasound in the diagnosis of small breast lesions.
    Du YR; Wu Y; Chen M; Gu XG
    Clin Hemorheol Microcirc; 2018; 70(3):291-300. PubMed ID: 29710688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features.
    Joo S; Yang YS; Moon WK; Kim HC
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What Help Could Ultrasound Elastography Give to the Diagnosis of Breast Papillary Lesions?
    Li LJ; Yao JY; Zhou XC; Zhao XB; Zhong WJ; Ou B; Luo BM; Hao SY; Zhi H
    Ultrasound Med Biol; 2017 May; 43(5):903-910. PubMed ID: 28256344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.