These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 31615371)
1. Rapid induction of the heat hardening response in an Arctic insect. Sørensen MH; Kristensen TN; Lauritzen JMS; Noer NK; Høye TT; Bahrndorff S Biol Lett; 2019 Oct; 15(10):20190613. PubMed ID: 31615371 [TBL] [Abstract][Full Text] [Related]
2. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Machekano H; Zidana C; Gotcha N; Nyamukondiwa C Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933 [TBL] [Abstract][Full Text] [Related]
3. Rapid Adjustments in Thermal Tolerance and the Metabolome to Daily Environmental Changes - A Field Study on the Arctic Seed Bug Noer NK; Sørensen MH; Colinet H; Renault D; Bahrndorff S; Kristensen TN Front Physiol; 2022; 13():818485. PubMed ID: 35250620 [TBL] [Abstract][Full Text] [Related]
4. Plasticity of cold and heat stress tolerance induced by hardening and acclimation in the melon thrips. Cao HQ; Chen JC; Tang MQ; Chen M; Hoffmann AA; Wei SJ J Insect Physiol; 2024 Mar; 153():104619. PubMed ID: 38301801 [TBL] [Abstract][Full Text] [Related]
5. The lack of plasticity and interspecific variability in thermal limits produce a highly heat-tolerant tropical host-parasitoid system. Bussy M; Destierdt W; Masnou P; Lazzari C; Goubault M; Pincebourde S J Therm Biol; 2024 Jul; 123():103930. PubMed ID: 39116624 [TBL] [Abstract][Full Text] [Related]
7. Temporal regulation of temperature tolerances and gene expression in an arctic insect. Noer NK; Nielsen KL; Sverrisdóttir E; Kristensen TN; Bahrndorff S J Exp Biol; 2023 Jun; 226(11):. PubMed ID: 37283090 [TBL] [Abstract][Full Text] [Related]
8. Heat hardening of a larval amphibian is dependent on acclimation period and temperature. Dallas J; Warne RW J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):339-345. PubMed ID: 36811331 [TBL] [Abstract][Full Text] [Related]
9. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
10. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance. Gilbert AL; Miles DB Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209 [TBL] [Abstract][Full Text] [Related]
11. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. van Heerwaarden B; Sgrò C; Kellermann VM Proc Biol Sci; 2024 Feb; 291(2016):20232700. PubMed ID: 38320612 [TBL] [Abstract][Full Text] [Related]
12. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Tarusikirwa VL; Mutamiswa R; English S; Chidawanyika F; Nyamukondiwa C J Therm Biol; 2020 May; 90():102598. PubMed ID: 32479393 [TBL] [Abstract][Full Text] [Related]
13. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols. Chidawanyika F; Nyamukondiwa C; Strathie L; Fischer K PLoS One; 2017; 12(1):e0169371. PubMed ID: 28052099 [TBL] [Abstract][Full Text] [Related]
14. Responses of terrestrial polar arthropods to high and increasing temperatures. Bahrndorff S; Lauritzen JMS; Sørensen MH; Noer NK; Kristensen TN J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 34424971 [TBL] [Abstract][Full Text] [Related]
15. A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel, Moyen NE; Crane RL; Somero GN; Denny MW Proc Biol Sci; 2020 Dec; 287(1940):20202561. PubMed ID: 33290677 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849 [TBL] [Abstract][Full Text] [Related]
17. Membrane lipid metabolism, heat shock response and energy costs mediate the interaction between acclimatization and heat-hardening response in the razor clam Sinonovacula constricta. Zhang W; Dong Y J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34499178 [TBL] [Abstract][Full Text] [Related]
18. Evidence for lower plasticity in CT Kellermann V; Sgrò CM J Evol Biol; 2018 Sep; 31(9):1300-1312. PubMed ID: 29876997 [TBL] [Abstract][Full Text] [Related]
19. Heat-hardening effects on mating success at high temperature in Drosophila melanogaster. Stazione L; Norry FM; Sambucetti P J Therm Biol; 2019 Feb; 80():172-177. PubMed ID: 30784483 [TBL] [Abstract][Full Text] [Related]
20. Responses of terrestrial polar arthropods to high and increasing temperatures. Bahrndorff S; Lauritzen JMS; Sørensen MH; Noer NK; Kristensen TN J Exp Biol; 2021 Apr; 224(Pt 7):. PubMed ID: 33824188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]