BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31615660)

  • 1. Characterization of a novel amylosucrase gene from the metagenome of a thermal aquatic habitat, and its use in turanose production from sucrose biomass.
    Agarwal N; Narnoliya LK; Singh SP
    Enzyme Microb Technol; 2019 Dec; 131():109372. PubMed ID: 31615660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis.
    Guérin F; Barbe S; Pizzut-Serin S; Potocki-Véronèse G; Guieysse D; Guillet V; Monsan P; Mourey L; Remaud-Siméon M; André I; Tranier S
    J Biol Chem; 2012 Feb; 287(9):6642-54. PubMed ID: 22210773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, purification, and characterization of a novel amylosucrase from Neisseria subflava.
    Park MO; Chandrasekaran M; Yoo SH
    Int J Biol Macromol; 2018 Apr; 109():160-166. PubMed ID: 29253543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose-based biosynthetic process for chain-length-defined α-glucan and functional sweetener by Bifidobacterium amylosucrase.
    Choi SW; Lee JA; Yoo SH
    Carbohydr Polym; 2019 Feb; 205():581-588. PubMed ID: 30446144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous expression, molecular modification of amylosucrase from Neisseria polysaccharea, and its application in the preparation of turanose.
    Su L; Zhao Y; Wu D; Wu J
    Food Chem; 2020 Jun; 314():126212. PubMed ID: 31972410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of low-calorie turanose and digestion-resistant starch by an amylosucrase from Neisseria subflava.
    Park MO; Chandrasekaran M; Yoo SH
    Food Chem; 2019 Dec; 300():125225. PubMed ID: 31351257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Process for High-Yield Turanose Production and Its Potential Property as an Adipogenesis Regulator.
    Park MO; Lee BH; Lim E; Lim JY; Kim Y; Park CS; Lee HG; Kang HK; Yoo SH
    J Agric Food Chem; 2016 Jun; 64(23):4758-64. PubMed ID: 27253611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Trehalose Synthase for the Production of Trehalose and Trehalulose.
    Agarwal N; Singh SP
    Microbiol Spectr; 2021 Dec; 9(3):e0133321. PubMed ID: 34817221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis.
    Emond S; Mondeil S; Jaziri K; André I; Monsan P; Remaud-Siméon M; Potocki-Véronèse G
    FEMS Microbiol Lett; 2008 Aug; 285(1):25-32. PubMed ID: 18522649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a unique pH-dependent amylosucrase from Deinococcus cellulosilyticus.
    Lee CY; So YS; Lim MC; Jeong S; Yoo SH; Park CS; Jung JH; Seo DH
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131834. PubMed ID: 38688341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on four amylosucrases from Bifidobacterium species.
    Kim SY; Seo DH; Kim SH; Hong YS; Lee JH; Kim YJ; Jung DH; Yoo SH; Park CS
    Int J Biol Macromol; 2020 Jul; 155():535-542. PubMed ID: 32220644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an α-(1,4)-Glucan-Synthesizing Amylosucrase from Cellulomonas carboniz T26.
    Wang Y; Xu W; Bai Y; Zhang T; Jiang B; Mu W
    J Agric Food Chem; 2017 Mar; 65(10):2110-2119. PubMed ID: 28240031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique biochemical reaction pathway towards trehalulose synthesis by an amylosucrase isolated from Deinococcus deserti.
    Bae J; Jun SJ; Chang PS; Yoo SH
    N Biotechnol; 2022 Sep; 70():1-8. PubMed ID: 35339700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Directed Mutagenic Engineering of a
    Jun SJ; Lee JA; Kim YW; Yoo SH
    J Agric Food Chem; 2022 Feb; 70(5):1579-1588. PubMed ID: 35080876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii.
    Ha SJ; Seo DH; Jung JH; Cha J; Kim TJ; Kim YW; Park CS
    Biosci Biotechnol Biochem; 2009 Jul; 73(7):1505-12. PubMed ID: 19584557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of hydroquinone into α-arbutin by transglucosylation activity of a metagenomic amylosucrase.
    Agarwal N; Rai AK; Singh SP
    3 Biotech; 2021 Aug; 11(8):362. PubMed ID: 34295607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amylosucrase from Neisseria polysaccharea: novel catalytic properties.
    Potocki de Montalk G; Remaud-Simeon M; Willemot RM; Sarçabal P; Planchot V; Monsan P
    FEBS Lett; 2000 Apr; 471(2-3):219-23. PubMed ID: 10767427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity.
    van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M
    FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species.
    Nam CH; Seo DH; Jung JH; Koh YJ; Jung JS; Heu S; Oh CS; Park CS
    Enzyme Microb Technol; 2014 Feb; 55():100-6. PubMed ID: 24411451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene.
    Wu L; Birch RG
    Appl Environ Microbiol; 2005 Mar; 71(3):1581-90. PubMed ID: 15746363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.