BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31615894)

  • 1. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy.
    Tang H; Shi K; Shi C; Aihara H; Zhang J; Du G
    J Biol Chem; 2019 Nov; 294(48):18398-18407. PubMed ID: 31615894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.
    Tian F; Yang C; Wang C; Guo T; Zhou P
    J Mol Model; 2014 Jun; 20(6):2257. PubMed ID: 24827611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125.
    Tekin A; Uzuner U; Sezen K
    Biotechnol Lett; 2021 Feb; 43(2):479-494. PubMed ID: 33047274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis.
    Tang H; Zhang J; Shi K; Aihara H; Du G
    Biochem Biophys Res Commun; 2019 May; 512(3):623-628. PubMed ID: 30914195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution.
    Martinez R; Schwaneberg U; Roccatano D
    Protein Eng Des Sel; 2011 Jul; 24(7):533-44. PubMed ID: 21471132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of thermostability by increasing rigidity in the finger regions and flexibility in the catalytic pocket area of Pseudoalteromonas porphyrae κ-carrageenase.
    Du Z; Huang X; Li H; Zheng M; Hong T; Li Z; Du X; Jiang Z; Ni H; Li Q; Zhu Y
    World J Microbiol Biotechnol; 2024 May; 40(7):216. PubMed ID: 38802708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 12. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion loop-mediated folding propagation governs efficient maturation of hyperthermophilic Tk-subtilisin at high temperatures.
    Uehara R; Dan N; Amesaka H; Yoshizawa T; Koga Y; Kanaya S; Takano K; Matsumura H; Tanaka SI
    FEBS Lett; 2021 Feb; 595(4):452-461. PubMed ID: 33314039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis.
    Silva SB; Pinheiro MP; Fuzo CA; Silva SR; Ferreira TL; Lourenzoni MR; Nonato MC; Vieira DS; Ward RJ
    Int J Biol Macromol; 2017 Apr; 97():574-584. PubMed ID: 28109807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G
    Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 19. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.