These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 31615984)
1. Reply to: Triplet-triplet annihilation in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit. Engmann S; Barito AJ; Bittle EG; Giebink NC; Richter LJ; Gundlach DJ Nat Commun; 2019 Oct; 10(1):4684. PubMed ID: 31615984 [No Abstract] [Full Text] [Related]
2. Triplet-triplet annihilation effects in rubrene/C Qiao X; Ma D Nat Commun; 2019 Oct; 10(1):4683. PubMed ID: 31615987 [No Abstract] [Full Text] [Related]
3. Origin of Sub-Bandgap Electroluminescence in Organic Light-Emitting Diodes. Xiang C; Peng C; Chen Y; So F Small; 2015 Oct; 11(40):5439-43. PubMed ID: 26312783 [TBL] [Abstract][Full Text] [Related]
4. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices. Chen Q; Jia W; Chen L; Yuan D; Zou Y; Xiong Z Sci Rep; 2016 May; 6():25331. PubMed ID: 27142285 [TBL] [Abstract][Full Text] [Related]
5. Intersystem Crossing and Triplet Fusion in Singlet-Fission-Dominated Rubrene-Based OLEDs Under High Bias Current. Tang X; Hu Y; Jia W; Pan R; Deng J; Deng J; He Z; Xiong Z ACS Appl Mater Interfaces; 2018 Jan; 10(2):1948-1956. PubMed ID: 29300090 [TBL] [Abstract][Full Text] [Related]
7. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook. Kondakov DY Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987574 [TBL] [Abstract][Full Text] [Related]
8. Higher order effects in organic LEDs with sub-bandgap turn-on. Engmann S; Barito AJ; Bittle EG; Giebink NC; Richter LJ; Gundlach DJ Nat Commun; 2019 Jan; 10(1):227. PubMed ID: 30651556 [TBL] [Abstract][Full Text] [Related]
9. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes. Zhang Y; Forrest SR Phys Rev Lett; 2012 Jun; 108(26):267404. PubMed ID: 23005014 [TBL] [Abstract][Full Text] [Related]
10. Suppressing singlet-triplet annihilation processes to achieve highly efficient deep-blue AIE-based OLEDs. Lin C; Han P; Qu F; Xiao S; Li Y; Xie D; Qiao X; Yang D; Dai Y; Sun Q; Qin A; Tang BZ; Ma D Mater Horiz; 2022 Aug; 9(9):2376-2383. PubMed ID: 35789246 [TBL] [Abstract][Full Text] [Related]
11. Multifaceted Sulfone-Carbazole-Based D-A-D Materials: A Blue Fluorescent Emitter as a Host for Phosphorescent OLEDs and Triplet-Triplet Annihilation Up-Conversion Electroluminescence. Yiu TC; Gnanasekaran P; Chen WL; Lin WH; Lin MJ; Wang DY; Lu CW; Chang CH; Chang YJ ACS Appl Mater Interfaces; 2023 Jan; 15(1):1748-1761. PubMed ID: 36576167 [TBL] [Abstract][Full Text] [Related]
12. Exciplex-Sensitized Triplet-Triplet Annihilation in Heterojunction Organic Thin-Film. Lin BY; Easley CJ; Chen CH; Tseng PC; Lee MZ; Sher PH; Wang JK; Chiu TL; Lin CF; Bardeen CJ; Lee JH ACS Appl Mater Interfaces; 2017 Mar; 9(12):10963-10970. PubMed ID: 28274116 [TBL] [Abstract][Full Text] [Related]
13. Investigations on exciton recombination and annihilation in TmPyPB-ETL OLEDs using magnetic field effects. Song J; Guan Y; Wang C; Bao X; Li W; Chen L; Niu L Phys Chem Chem Phys; 2023 Sep; 25(35):23783-23791. PubMed ID: 37622246 [TBL] [Abstract][Full Text] [Related]
14. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Furukawa T; Nakanotani H; Inoue M; Adachi C Sci Rep; 2015 Feb; 5():8429. PubMed ID: 25673259 [TBL] [Abstract][Full Text] [Related]
15. Achievement of High-Level Reverse Intersystem Crossing in Rubrene-Doped Organic Light-Emitting Diodes. Tang X; Pan R; Zhao X; Zhu H; Xiong Z J Phys Chem Lett; 2020 Apr; 11(8):2804-2811. PubMed ID: 32191490 [TBL] [Abstract][Full Text] [Related]
16. Role of Bimolecular Exciton Kinetics in Controlling the Efficiency of Organic Light-Emitting Diodes. Dey A; Kabra D ACS Appl Mater Interfaces; 2018 Nov; 10(44):38287-38293. PubMed ID: 30298717 [TBL] [Abstract][Full Text] [Related]
17. Efficiency of noncoherent photon upconversion by triplet-triplet annihilation: the C60 plus anthanthrene system and the importance of tuning the triplet energies. Sugunan SK; Greenwald C; Paige MF; Steer RP J Phys Chem A; 2013 Jul; 117(26):5419-27. PubMed ID: 23755869 [TBL] [Abstract][Full Text] [Related]
18. On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Cheng YY; Khoury T; Clady RG; Tayebjee MJ; Ekins-Daukes NJ; Crossley MJ; Schmidt TW Phys Chem Chem Phys; 2010 Jan; 12(1):66-71. PubMed ID: 20024445 [TBL] [Abstract][Full Text] [Related]
19. Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives. Lim H; Woo SJ; Ha YH; Kim YH; Kim JJ Adv Mater; 2022 Jan; 34(1):e2100161. PubMed ID: 34687094 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopy of Resonant Intermediate States for Triplet-Triplet Annihilation Upconversion in Crystalline Rubrene: Radical Ions as Sensitizers. Beimborn JC; Zagorec-Marks W; Weber JM J Phys Chem Lett; 2020 Sep; 11(17):7212-7217. PubMed ID: 32787307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]