These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31616361)

  • 1. The Motion of Body Center of Mass During Walking: A Review Oriented to Clinical Applications.
    Tesio L; Rota V
    Front Neurol; 2019; 10():999. PubMed ID: 31616361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The curvature peaks of the trajectory of the body centre of mass during walking: A new index of dynamic balance.
    Malloggi C; Scarano S; Cerina V; Catino L; Rota V; Tesio L
    J Biomech; 2021 Jun; 123():110486. PubMed ID: 34004391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redirection of center-of-mass velocity during the step-to-step transition of human walking.
    Adamczyk PG; Kuo AD
    J Exp Biol; 2009 Aug; 212(Pt 16):2668-78. PubMed ID: 19648412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crouch gait can be an effective form of forced-use/no constraint exercise for the paretic lower limb in stroke.
    Tesio L; Rota V; Malloggi C; Brugliera L; Catino L
    Int J Rehabil Res; 2017 Sep; 40(3):254-267. PubMed ID: 28574860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration in the center of mass trajectory of patients after stroke.
    do Carmo AA; Kleiner AF; Barros RM
    Top Stroke Rehabil; 2015 Oct; 22(5):349-56. PubMed ID: 25906834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of belt speed on the body's center of mass motion relative to the center of pressure during treadmill walking.
    Lu HL; Lu TW; Lin HC; Hsieh HJ; Chan WP
    Gait Posture; 2017 Jan; 51():109-115. PubMed ID: 27744249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arm movements during split-belt walking reveal predominant patterns of interlimb coupling.
    MacLellan MJ; Qaderdan K; Koehestanie P; Duysens J; McFadyen BJ
    Hum Mov Sci; 2013 Feb; 32(1):79-90. PubMed ID: 23176813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing Models of Work in Quadrupedal Walking: Center of Mass Work is Insufficient to Explain Stereotypical Gait.
    Polet DT; Bertram JEA
    Front Bioeng Biotechnol; 2022; 10():826336. PubMed ID: 35646881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisional mechanics of the diagonal gaits of horses over a range of speeds.
    Hobbs SJ; Clayton HM
    PeerJ; 2019; 7():e7689. PubMed ID: 31576241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?
    Griffin TM; Main RP; Farley CT
    J Exp Biol; 2004 Sep; 207(Pt 20):3545-58. PubMed ID: 15339951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant.
    Neptune RR; Zajac FE; Kautz SA
    J Biomech; 2004 Jun; 37(6):817-25. PubMed ID: 15111069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Biomechanical Gait Classification with Reference to Collected Trot, Passage and Piaffe in Dressage Horses.
    Clayton HM; Hobbs SJ
    Animals (Basel); 2019 Oct; 9(10):. PubMed ID: 31623360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limping on split-belt treadmills implies opposite kinematic and dynamic lower limb asymmetries.
    Tesio L; Malloggi C; Malfitano C; Coccetta CA; Catino L; Rota V
    Int J Rehabil Res; 2018 Dec; 41(4):304-315. PubMed ID: 30303831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speed- and mode-dependent modulation of the center of mass trajectory in human gaits as revealed by Lissajous curves.
    Takiyama K; Yokoyama H; Kaneko N; Nakazawa K
    J Biomech; 2020 Sep; 110():109947. PubMed ID: 32827767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.
    Hinkel-Lipsker JW; Hahn ME
    Hum Mov Sci; 2018 Jun; 59():178-192. PubMed ID: 29704789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly.
    Hong SW; Leu TH; Wang TM; Li JD; Ho WP; Lu TW
    Gait Posture; 2015 Oct; 42(4):523-8. PubMed ID: 26386677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle Push-Off Based Mathematical Model for Freezing of Gait in Parkinson's Disease.
    Parakkal Unni M; Menon PP; Wilson MR; Tsaneva-Atanasova K
    Front Bioeng Biotechnol; 2020; 8():552635. PubMed ID: 33195117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.