BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31616385)

  • 1. Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen
    Gaffar FY; Imani J; Karlovsky P; Koch A; Kogel KH
    Front Microbiol; 2019; 10():1662. PubMed ID: 31616385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and patterns of small interfering RNA associated with reduced virulence and mycotoxin production.
    Baldwin T; Islamovic E; Klos K; Schwartz P; Gillespie J; Hunter S; Bregitzer P
    PLoS One; 2018; 13(8):e0202798. PubMed ID: 30161200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Double-Stranded RNAs Targeting
    Hao G; McCormick S; Vaughan MM
    Phytopathology; 2021 Nov; 111(11):2080-2087. PubMed ID: 33823648
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum.
    Son H; Park AR; Lim JY; Shin C; Lee YW
    PLoS Genet; 2017 Feb; 13(2):e1006595. PubMed ID: 28146558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum.
    Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839
    [No Abstract]   [Full Text] [Related]  

  • 6. RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals.
    Machado AK; Brown NA; Urban M; Kanyuka K; Hammond-Kosack KE
    Pest Manag Sci; 2018 Apr; 74(4):790-799. PubMed ID: 28967180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum.
    Yang P; Chen Y; Wu H; Fang W; Liang Q; Zheng Y; Olsson S; Zhang D; Zhou J; Wang Z; Zheng W
    Curr Genet; 2018 Feb; 64(1):285-301. PubMed ID: 28918485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum.
    Chen Y; Gao Q; Huang M; Liu Y; Liu Z; Liu X; Ma Z
    Sci Rep; 2015 Jul; 5():12500. PubMed ID: 26212591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.
    Yu J; Lee KM; Cho WK; Park JY; Kim KH
    J Virol; 2018 May; 92(9):. PubMed ID: 29437977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Characterization of the RNA Exosome Complex in Relation to Growth, Development, and Pathogenicity of Fusarium graminearum.
    Yuan Y; Mao X; Abubakar YS; Zheng W; Wang Z; Zhou J; Zheng H
    Microbiol Spectr; 2023 Jun; 11(3):e0505822. PubMed ID: 37158744
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Alisaac E; Rathgeb A; Karlovsky P; Mahlein AK
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33396894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences.
    Yu J; Park JY; Heo JI; Kim KH
    Mol Plant Pathol; 2020 Feb; 21(2):230-243. PubMed ID: 31815356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicer and Argonaute Genes Involved in RNA Interference in the Entomopathogenic Fungus Metarhizium robertsii.
    Meng H; Wang Z; Wang Y; Zhu H; Huang B
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.
    Wu J; Liu Y; Lv W; Yue X; Que Y; Yang N; Zhang Z; Ma Z; Talbot NJ; Wang Z
    Fungal Genet Biol; 2015 Oct; 83():92-102. PubMed ID: 26341536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum.
    Jiang C; Zhang S; Zhang Q; Tao Y; Wang C; Xu JR
    Environ Microbiol; 2015 Apr; 17(4):1245-60. PubMed ID: 25040476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Spray-Mediated Silencing of
    Werner BT; Gaffar FY; Schuemann J; Biedenkopf D; Koch AM
    Front Plant Sci; 2020; 11():476. PubMed ID: 32411160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance.
    Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M
    Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum.
    Zhang L; Li B; Zhang Y; Jia X; Zhou M
    Mol Plant Pathol; 2016 Jan; 17(1):16-28. PubMed ID: 25808544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-dependent RNA polymerases regulate ascospore discharge through the exonic-sRNA-mediated RNAi pathway.
    Zeng W; Lin J; Xie J; Fu Y; Lin Y; Chen T; Li B; Yu X; Chen W; Jiang D; Cheng J
    mBio; 2024 Jun; 15(6):e0037724. PubMed ID: 38752738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dicer-Like Proteins Regulate Sexual Development via the Biogenesis of Perithecium-Specific MicroRNAs in a Plant Pathogenic Fungus
    Zeng W; Wang J; Wang Y; Lin J; Fu Y; Xie J; Jiang D; Chen T; Liu H; Cheng J
    Front Microbiol; 2018; 9():818. PubMed ID: 29755439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.