BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31616467)

  • 1. New Recurrent Structural Aberrations in the Genome of Chronic Lymphocytic Leukemia Based on Exome-Sequencing Data.
    Mosquera Orgueira A; Antelo Rodríguez B; Díaz Arias JÁ; González Pérez MS; Bello López JL
    Front Genet; 2019; 10():854. PubMed ID: 31616467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing copy number aberrations and copy-neutral loss-of-heterozygosity across the genome as best practice: An evidence-based review from the Cancer Genomics Consortium (CGC) working group for chronic lymphocytic leukemia.
    Chun K; Wenger GD; Chaubey A; Dash DP; Kanagal-Shamanna R; Kantarci S; Kolhe R; Van Dyke DL; Wang L; Wolff DJ; Miron PM
    Cancer Genet; 2018 Dec; 228-229():236-250. PubMed ID: 30554732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms.
    Gunnarsson R; Staaf J; Jansson M; Ottesen AM; Göransson H; Liljedahl U; Ralfkiaer U; Mansouri M; Buhl AM; Smedby KE; Hjalgrim H; Syvänen AC; Borg A; Isaksson A; Jurlander J; Juliusson G; Rosenquist R
    Genes Chromosomes Cancer; 2008 Aug; 47(8):697-711. PubMed ID: 18484635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia.
    Knight SJ; Yau C; Clifford R; Timbs AT; Sadighi Akha E; Dréau HM; Burns A; Ciria C; Oscier DG; Pettitt AR; Dutton S; Holmes CC; Taylor J; Cazier JB; Schuh A
    Leukemia; 2012 Jul; 26(7):1564-75. PubMed ID: 22258401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia.
    Malek SN
    Oncogene; 2013 Jun; 32(23):2805-17. PubMed ID: 23001040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary mediastinal large B-cell lymphoma is characterized by large-scale copy-neutral loss of heterozygosity.
    Tuveri S; Debackere K; Marcelis L; Dierckxsens N; Demeulemeester J; Dimitriadou E; Dierickx D; Lefesvre P; Deraedt K; Graux C; Michaux L; Cools J; Tousseyn T; Vermeesch JR; Wlodarska I
    Genes Chromosomes Cancer; 2022 Oct; 61(10):603-615. PubMed ID: 35611992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focal chromosomal copy number aberrations in cancer-Needles in a genome haystack.
    Krijgsman O; Carvalho B; Meijer GA; Steenbergen RD; Ylstra B
    Biochim Biophys Acta; 2014 Nov; 1843(11):2698-2704. PubMed ID: 25110350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma.
    Wang X; Li X; Cheng Y; Sun X; Sun X; Self S; Kooperberg C; Dai JY
    Hum Genomics; 2015 Sep; 9(1):22. PubMed ID: 26374103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the genetic landscape in chronic lymphocytic leukemia using high-resolution technologies.
    Gunnarsson R; Mansouri L; Rosenquist R
    Leuk Lymphoma; 2013 Aug; 54(8):1583-90. PubMed ID: 23167608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group.
    Xu X; Bryke C; Sukhanova M; Huxley E; Dash DP; Dixon-Mciver A; Fang M; Griepp PT; Hodge JC; Iqbal A; Jeffries S; Kanagal-Shamanna R; Quintero-Rivera F; Shetty S; Slovak ML; Yenamandra A; Lennon PA; Raca G
    Cancer Genet; 2018 Dec; 228-229():218-235. PubMed ID: 30344013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma.
    Dalmasso C; Carpentier W; Guettier C; Camilleri-Broët S; Borelli WV; Campos Dos Santos CR; Castaing D; Duclos-Vallée JC; Broët P
    BMC Cancer; 2015 Mar; 15():126. PubMed ID: 25879652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T cell receptor gene repertoire profiles in subgroups of patients with chronic lymphocytic leukemia bearing distinct genomic aberrations.
    Vlachonikola E; Pechlivanis N; Karakatsoulis G; Sofou E; Gkoliou G; Jeromin S; Stavroyianni N; Ranghetti P; Scarfo L; Österholm C; Mansouri L; Notopoulou S; Siorenta A; Anagnostopoulos A; Ghia P; Haferlach C; Rosenquist R; Psomopoulos F; Kouvatsi A; Baliakas P; Stamatopoulos K; Chatzidimitriou A
    Front Oncol; 2023; 13():1097942. PubMed ID: 36816924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of recurrent copy-number alterations and copy-neutral loss of heterozygosity in head and neck squamous cell carcinoma.
    Marescalco MS; Capizzi C; Condorelli DF; Barresi V
    J Oral Pathol Med; 2014 Jan; 43(1):20-7. PubMed ID: 23750501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide assessment of recurrent genomic imbalances in canine leukemia identifies evolutionarily conserved regions for subtype differentiation.
    Roode SC; Rotroff D; Avery AC; Suter SE; Bienzle D; Schiffman JD; Motsinger-Reif A; Breen M
    Chromosome Res; 2015 Dec; 23(4):681-708. PubMed ID: 26037708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms.
    Kanagal-Shamanna R; Hodge JC; Tucker T; Shetty S; Yenamandra A; Dixon-McIver A; Bryke C; Huxley E; Lennon PA; Raca G; Xu X; Jeffries S; Quintero-Rivera F; Greipp PT; Slovak ML; Iqbal MA; Fang M
    Cancer Genet; 2018 Dec; 228-229():197-217. PubMed ID: 30377088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation microarray-based detection of clinical copy-number aberrations in CLL benchmarked to standard FISH analysis.
    Hussmann D; Starnawska A; Kristensen L; Daugaard I; Cédile O; Nguyen VQ; Kjeldsen TE; Hansen CS; Bybjerg-Grauholm J; Kristensen T; Larsen TS; Møller MB; Nyvold CG; Hansen LL; Wojdacz TK
    Genomics; 2022 Nov; 114(6):110510. PubMed ID: 36272495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component.
    Alonso MH; Aussó S; Lopez-Doriga A; Cordero D; Guinó E; Solé X; Barenys M; de Oca J; Capella G; Salazar R; Sanz-Pamplona R; Moreno V
    Br J Cancer; 2017 Jul; 117(3):421-431. PubMed ID: 28683472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes.
    Khalil AIS; Khyriem C; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Apr; 21(1):147. PubMed ID: 32299346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of genomic copy number alteration emphasizing a restriction site-based strategy of genome re-sequencing.
    Zheng C; Miao X; Li Y; Huang Y; Ruan J; Ma X; Wang L; Wu CI; Cai J
    Bioinformatics; 2013 Nov; 29(22):2813-21. PubMed ID: 23962614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.
    Frankel A; Armour N; Nancarrow D; Krause L; Hayward N; Lampe G; Smithers BM; Barbour A
    Genes Chromosomes Cancer; 2014 Apr; 53(4):324-38. PubMed ID: 24446147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.