BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31616839)

  • 1. Tunable Hybrid Phononic Crystal Lens Using Thermo-Acoustic Polymers.
    Walker EL; Reyes-Contreras D; Jin Y; Neogi A
    ACS Omega; 2019 Oct; 4(15):16585-16590. PubMed ID: 31616839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Imaging by Thermally Tunable Phononic Crystal Lens.
    Jin Y; Neogi A
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of temperature and frequency dispersion on sound speed in bulk poly (vinyl alcohol) poly (N-isopropylacrylamide) hydrogels caused by the phase transition.
    Jin Y; Heo H; Walker E; Krokhin A; Choi TY; Neogi A
    Ultrasonics; 2020 May; 104():105931. PubMed ID: 32156431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally Tunable Acoustic Beam Splitter Based on Poly(vinyl alcohol) Poly(N-isopropylacrylamide) Hydrogel.
    Jin Y; Zhou M; Choi TY; Neogi A
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally Tunable Dynamic and Static Elastic Properties of Hydrogel Due to Volumetric Phase Transition.
    Jin Y; Yang T; Ju S; Zhang H; Choi TY; Neogi A
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32629821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films.
    Sun X; Tyagi P; Agate S; Lucia L; McCord M; Pal L
    Carbohydr Polym; 2019 Mar; 208():495-503. PubMed ID: 30658828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens.
    Welter JT; Sathish S; Christensen DE; Brodrick PG; Heebl JD; Cherry MR
    J Acoust Soc Am; 2011 Nov; 130(5):2789-96. PubMed ID: 22087907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Acoustic Emission Characteristics in Pipe-Like Structures with Gradient-Index Phononic Crystal Lens.
    Okudan G; Danawe H; Zhang L; Ozevin D; Tol S
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional Ultrasound Source for Solid Materials Inspection: Diffraction Management in a Metallic Phononic Crystal.
    Selim H; Picó R; Trull J; Prieto MD; Cojocaru C
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33137989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous temperature dependence of speed of sound of bulk poly(N-isopropylacrylamide) hydrogels near the phase transition.
    Walker E; Reyes D; Krokhin A; Neogi A
    Ultrasonics; 2014 Jul; 54(5):1337-40. PubMed ID: 24589257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjustable hybrid diffractive/refractive achromatic lens.
    Valley P; Savidis N; Schwiegerling J; Dodge MR; Peyman G; Peyghambarian N
    Opt Express; 2011 Apr; 19(8):7468-79. PubMed ID: 21503055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-based phononic crystal lenses: Machine learning-assisted analysis and design.
    Guo L; Zhao S; Yang J; Kitipornchai S
    Ultrasonics; 2024 Mar; 138():107220. PubMed ID: 38118238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.
    Chou PY; Chen SH; Chen CH; Chen SH; Fong YT; Chen JP
    Acta Biomater; 2017 Nov; 63():85-95. PubMed ID: 28919215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Phononic Crystal Based Sensor for Characterization of Mixtures and Heterogeneous Liquids.
    Mukhin N; Kutia M; Aman A; Steinmann U; Lucklum R
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrow Band Solid-Liquid Composite Arrangements: Alternative Solutions for Phononic Crystal-Based Liquid Sensors.
    Mukhin N; Kutia M; Oseev A; Steinmann U; Palis S; Lucklum R
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Microgels with Thermo-Tunable Elasticity for Controllable Cell Confinement.
    Hackelbusch S; Rossow T; Steinhilber D; Weitz DA; Seiffert S
    Adv Healthc Mater; 2015 Aug; 4(12):1841-8. PubMed ID: 26088728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable polymer lens.
    Beadie G; Sandrock ML; Wiggins MJ; Lepkowicz RS; Shirk JS; Ponting M; Yang Y; Kazmierczak T; Hiltner A; Baer E
    Opt Express; 2008 Aug; 16(16):11847-57. PubMed ID: 18679457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures.
    Pérez-López S; Fuster JM; Minin IV; Minin OV; Candelas P
    Sci Rep; 2019 Sep; 9(1):13363. PubMed ID: 31527645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.