These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31616892)

  • 1. Hypothesis: entatic versus ecstatic states in metalloproteins.
    Hagen WR
    Metallomics; 2019 Nov; 11(11):1768-1778. PubMed ID: 31616892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence for a geometrically constrained "entatic state" effect on copper(II/I) electron-transfer kinetics as manifested in metastable intermediates.
    Yu Q; Salhi CA; Ambundo EA; Heeg MJ; Ochrymowycz LA; Rorabacher DB
    J Am Chem Soc; 2001 Jun; 123(24):5720-9. PubMed ID: 11403604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrant coordination geometries discovered in the most abundant metalloproteins.
    Yao S; Flight RM; Rouchka EC; Moseley HN
    Proteins; 2017 May; 85(5):885-907. PubMed ID: 28142195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirecting electron transfer in photosystem II from water to redox-active metal complexes.
    Ulas G; Brudvig GW
    J Am Chem Soc; 2011 Aug; 133(34):13260-3. PubMed ID: 21809858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper Guanidinoquinoline Complexes as Entatic State Models of Electron-Transfer Proteins.
    Stanek J; Sackers N; Fink F; Paul M; Peters L; Grunzke R; Hoffmann A; Herres-Pawlis S
    Chemistry; 2017 Nov; 23(62):15738-15745. PubMed ID: 28850743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives and expectations in structural bioinformatics of metalloproteins.
    Yao S; Flight RM; Rouchka EC; Moseley HN
    Proteins; 2017 May; 85(5):938-944. PubMed ID: 28168746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. φXANES: In vivo imaging of metal-protein coordination environments.
    James SA; Hare DJ; Jenkins NL; de Jonge MD; Bush AI; McColl G
    Sci Rep; 2016 Feb; 6():20350. PubMed ID: 26861174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State.
    Ren Y; Forté J; Cheaib K; Vanthuyne N; Fensterbank L; Vezin H; Orio M; Blanchard S; Desage-El Murr M
    iScience; 2020 Mar; 23(3):100955. PubMed ID: 32199288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energised (entatic) states of groups and of secondary structures in proteins and metalloproteins.
    Williams RJ
    Eur J Biochem; 1995 Dec; 234(2):363-81. PubMed ID: 8536678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray crystallography and biological metal centers: is seeing believing?
    Sommerhalter M; Lieberman RL; Rosenzweig AC
    Inorg Chem; 2005 Feb; 44(4):770-8. PubMed ID: 15859245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling and exploiting intrinsic unpaired electrons in metalloproteins.
    Richardson KH; Seif-Eddine M; Sills A; Roessler MM
    Methods Enzymol; 2022; 666():233-296. PubMed ID: 35465921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy.
    Eisermann J; Seif-Eddine M; Roessler MM
    Curr Opin Chem Biol; 2021 Apr; 61():114-122. PubMed ID: 33422836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function.
    Rubino JT; Franz KJ
    J Inorg Biochem; 2012 Feb; 107(1):129-43. PubMed ID: 22204943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of protein crystals with metal ions, complexes and nanoparticles.
    Abe S; Maity B; Ueno T
    Curr Opin Chem Biol; 2018 Apr; 43():68-76. PubMed ID: 29245143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme.
    Meury M; Knop M; Seebeck FP
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8115-8119. PubMed ID: 28544744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter- and Intramolecular Electron Transfer in Copper Complexes: Electronic Entatic State with Redox-Active Guanidine Ligands.
    Schrempp DF; Leingang S; Schnurr M; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2017 Oct; 23(55):13607-13611. PubMed ID: 28771843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation state changes and electron flow in enzymatic catalysis and electrocatalysis through Wannier-function analysis.
    Sit PH; Zipoli F; Chen J; Car R; Cohen MH; Selloni A
    Chemistry; 2011 Oct; 17(43):12136-43. PubMed ID: 21905140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.