These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31617274)

  • 1. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing.
    Jung YH; Hong SK; Wang HS; Han JH; Pham TX; Park H; Kim J; Kang S; Yoo CD; Lee KJ
    Adv Mater; 2020 Sep; 32(35):e1904020. PubMed ID: 31617274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics.
    Gilbert JM; Gonzalez JA; Cheah LA; Ell SR; Green P; Moore RK; Holdsworth E
    J Acoust Soc Am; 2017 Mar; 141(3):EL307. PubMed ID: 28372104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning.
    Jiang Y; Zhang Y; Ning C; Ji Q; Peng X; Dong K; Wang ZL
    Small; 2022 Apr; 18(13):e2106960. PubMed ID: 35122473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Feature Parameter Extraction from Speech Signals Using Machine Learning Algorithm.
    Abdusalomov AB; Safarov F; Rakhimov M; Turaev B; Whangbo TK
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Enhanced Flexible Mechanical Sensing.
    Wang Y; Adam ML; Zhao Y; Zheng W; Gao L; Yin Z; Zhao H
    Nanomicro Lett; 2023 Feb; 15(1):55. PubMed ID: 36800133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning-Combined Flexible Sensor for Tactile Detection and Voice Recognition.
    Xie J; Zhao Y; Zhu D; Yan J; Li J; Qiao M; He G; Deng S
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12551-12559. PubMed ID: 36808950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics.
    Wang HS; Hong SK; Han JH; Jung YH; Jeong HK; Im TH; Jeong CK; Lee BY; Kim G; Yoo CD; Lee KJ
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33579699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Innovative Voice Analyzer "VA" Smart Phone Program for Quantitative Analysis of Voice Quality.
    Kojima T; Fujimura S; Hori R; Okanoue Y; Shoji K; Inoue M
    J Voice; 2019 Sep; 33(5):642-648. PubMed ID: 29801970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Acoustic Signal Processing Techniques for Enhanced Bowel Sound Analysis.
    Allwood G; Du X; Webberley KM; Osseiran A; Marshall BJ
    IEEE Rev Biomed Eng; 2019; 12():240-253. PubMed ID: 30307875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms.
    Mesallam TA; Farahat M; Malki KH; Alsulaiman M; Ali Z; Al-Nasheri A; Muhammad G
    J Healthc Eng; 2017; 2017():8783751. PubMed ID: 29201333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks.
    Peng Z; Wen H; Jian J; Gribok A; Wang M; Huang S; Liu H; Mao ZH; Chen KP
    Sci Rep; 2020 Dec; 10(1):21014. PubMed ID: 33273503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.
    Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT
    J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence: Implications for the future of work.
    Howard J
    Am J Ind Med; 2019 Nov; 62(11):917-926. PubMed ID: 31436850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.
    Takashima R; Takiguchi T; Ariki Y
    J Acoust Soc Am; 2013 Feb; 133(2):891-901. PubMed ID: 23363107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory inspired machine learning techniques can improve speech intelligibility and quality for hearing-impaired listeners.
    Monaghan JJ; Goehring T; Yang X; Bolner F; Wang S; Wright MC; Bleeck S
    J Acoust Soc Am; 2017 Mar; 141(3):1985. PubMed ID: 28372043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability of piezoelectric sensors for speech rehabilitation.
    Miyaoka Y; Ashida I; Kawakami S; Miyaoka S
    J Med Eng Technol; 2009; 33(4):328-33. PubMed ID: 19384709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor.
    Ravenscroft D; Prattis I; Kandukuri T; Samad YA; Mallia G; Occhipinti LG
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Trends in Soft Electronics: Integrating Machine Intelligence with Soft Acoustic/Vibration Sensors.
    Lee JH; Cho KH; Cho K
    Adv Mater; 2023 Aug; 35(32):e2209673. PubMed ID: 37043776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards online maximum-likelihood-based speech clustering and separation.
    Souden M; Kinoshita K; Nakatani T
    J Acoust Soc Am; 2013 May; 133(5):EL339-45. PubMed ID: 23656091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic analysis of slips of the tongue: Insights into the cognitive architecture of speech production.
    Goldrick M; Keshet J; Gustafson E; Heller J; Needle J
    Cognition; 2016 Apr; 149():31-9. PubMed ID: 26779665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.