These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31617274)

  • 21. Towards online maximum-likelihood-based speech clustering and separation.
    Souden M; Kinoshita K; Nakatani T
    J Acoust Soc Am; 2013 May; 133(5):EL339-45. PubMed ID: 23656091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic analysis of slips of the tongue: Insights into the cognitive architecture of speech production.
    Goldrick M; Keshet J; Gustafson E; Heller J; Needle J
    Cognition; 2016 Apr; 149():31-9. PubMed ID: 26779665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2006 Mar; 119(3):1817-33. PubMed ID: 16583922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments.
    Bonet-Solà D; Alsina-Pagès RM
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing clinical utility of machine learning and artificial intelligence approaches to analyze speech recordings in multiple sclerosis: A pilot study.
    Svoboda E; Bořil T; Rusz J; Tykalová T; Horáková D; Guttmann CRG; Blagoev KB; Hatabu H; Valtchinov VI
    Comput Biol Med; 2022 Sep; 148():105853. PubMed ID: 35870318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auditory feature representation using convolutional restricted Boltzmann machine and Teager energy operator for speech recognition.
    Sailor HB; Patil HA
    J Acoust Soc Am; 2017 Jun; 141(6):EL500. PubMed ID: 28618812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speech Technology Progress Based on New Machine Learning Paradigm.
    Delić V; Perić Z; Sečujski M; Jakovljević N; Nikolić J; Mišković D; Simić N; Suzić S; Delić T
    Comput Intell Neurosci; 2019; 2019():4368036. PubMed ID: 31341467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine Learning and Cochlear Implantation-A Structured Review of Opportunities and Challenges.
    Crowson MG; Lin V; Chen JM; Chan TCY
    Otol Neurotol; 2020 Jan; 41(1):e36-e45. PubMed ID: 31644477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Functional Endoscopic Sinus Surgery on Voice and Speech Recognition.
    Hernández-García E; Moro-Velázquez L; González-Herranz R; Godino-Llorente JI; Plaza G
    J Voice; 2020 Jul; 34(4):650.e1-650.e6. PubMed ID: 30853310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational bioacoustics with deep learning: a review and roadmap.
    Stowell D
    PeerJ; 2022; 10():e13152. PubMed ID: 35341043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phonetically trained models for speaker recognition.
    Rodríguez-Liñares L; Garciá-Mateo C
    J Acoust Soc Am; 2001 Jan; 109(1):385-9. PubMed ID: 11206167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meta-analysis of voice disorders databases and applied machine learning techniques.
    Syed SA; Rashid M; Hussain S
    Math Biosci Eng; 2020 Nov; 17(6):7958-7979. PubMed ID: 33378928
    [No Abstract]   [Full Text] [Related]  

  • 34. Biosignal Sensors and Deep Learning-Based Speech Recognition: A Review.
    Lee W; Seong JJ; Ozlu B; Shim BS; Marakhimov A; Lee S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Bayesian inference model for speech localization (L).
    Escolano J; Perez-Lorenzo JM; Xiang N; Cobos M; López JJ
    J Acoust Soc Am; 2012 Sep; 132(3):1257-60. PubMed ID: 22978853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human-Machine Interaction via Dual Modes of Voice and Gesture Enabled by Triboelectric Nanogenerator and Machine Learning.
    Luo H; Du J; Yang P; Shi Y; Liu Z; Yang D; Zheng L; Chen X; Wang ZL
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17009-17018. PubMed ID: 36947663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic mapping of ocean currents using networked distributed sensors.
    Huang CF; Yang TC; Liu JY; Schindall J
    J Acoust Soc Am; 2013 Sep; 134(3):2090-105. PubMed ID: 23967940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of shouted speech in noise: human and machine.
    Pohjalainen J; Raitio T; Yrttiaho S; Alku P
    J Acoust Soc Am; 2013 Apr; 133(4):2377-89. PubMed ID: 23556603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An introduction to computerised speech lab.
    Van Lierde K; Moerman M; Vermeersch H; Van Cauwenberge P
    Acta Otorhinolaryngol Belg; 1996; 50(4):309-14. PubMed ID: 9001640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representing high-dimensional data to intelligent prostheses and other wearable assistive robots: A first comparison of tile coding and selective Kanerva coding.
    Travnik JB; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1443-1450. PubMed ID: 28814023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.