These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31617378)

  • 1. Modeling of Carbon Monoxide Two-Photon Laser-Induced Fluorescence (LIF) Spectra at High Temperature and Pressure.
    Carrivain O; Orain M; Dorval N; Morin C; Legros G
    Appl Spectrosc; 2020 Jun; 74(6):629-644. PubMed ID: 31617378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.
    Carrivain O; Orain M; Dorval N; Morin C; Legros G
    Appl Spectrosc; 2017 Oct; 71(10):2353-2366. PubMed ID: 28523936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic investigation of high-pressure femtosecond two-photon laser-induced fluorescence of carbon monoxide up to 20  bar.
    Wang Y; Kulatilaka WD
    Appl Opt; 2019 Apr; 58(10):C23-C29. PubMed ID: 31045027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-scaling characteristics of femtosecond two-photon laser-induced fluorescence of carbon monoxide.
    Rahman KA; Athmanathan V; Slipchenko MN; Meyer TR; Roy S
    Appl Opt; 2019 Sep; 58(27):7458-7465. PubMed ID: 31674400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative two-photon LIF imaging of carbon monoxide in combustion gases.
    Seitzman JM; Haumann J; Hanson RK
    Appl Opt; 1987 Jul; 26(14):2892-9. PubMed ID: 20489978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry.
    Lee T; Bessler WG; Kronemayer H; Schulz C; Jeffries JB
    Appl Opt; 2005 Nov; 44(31):6718-28. PubMed ID: 16270561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of collisional broadening and shift for the Kr 4
    Sahoo A; Zelenak D; Narayanaswamy V
    Appl Opt; 2020 Feb; 59(5):1438-1446. PubMed ID: 32225402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Apr; 42(12):2031-42. PubMed ID: 12716143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2002 Jun; 41(18):3547-57. PubMed ID: 12078680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical effect in two-photon laser-induced fluorescence detection of carbon monoxide in hydrocarbon flames.
    Nefedov AP; Sinel'shchikov VA; Usachev AD; Zobnin AV
    Appl Opt; 1998 Nov; 37(33):7729-36. PubMed ID: 18301610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame.
    Andresen P; Bath A; Gröger W; Lülf HW; Meijer G; Meulen JJ
    Appl Opt; 1988 Jan; 27(2):365-78. PubMed ID: 20523601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon-excited fluorescence of CO: experiments and modeling.
    Ruchkina M; Ding P; Aldén M; Bood J; Brackmann C
    Opt Express; 2019 Sep; 27(18):25656-25669. PubMed ID: 31510434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames.
    Mokhov AV; Levinsky HB; van der Meij CE; Jacobs RA
    Appl Opt; 1995 Oct; 34(30):7074-82. PubMed ID: 21060569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naphthalene laser-induced fluorescence measurements at low temperature and pressure.
    Combs CS; Clemens NT
    Appl Opt; 2016 May; 55(13):3656-69. PubMed ID: 27140385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation wavelength dependence of the fluorescence lifetime of anisole.
    Baranowski T; Dreier T; Schulz C; Endres T
    Phys Chem Chem Phys; 2019 Jul; 21(27):14562-14570. PubMed ID: 31232408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon laser-induced fluorescence study of the CO B 1Σ+ (v' = 0) state in a 4850 K plasma plume: Modified molecular constants, evidence of predissociation, and J'-dependent photoionization.
    Murray JS; Clemens NT
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38912626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A laser induced fluorescence study relating to physical properties of the iodine monoxide radical.
    Gravestock TJ; Blitz MA; Heard DE
    Phys Chem Chem Phys; 2010 Jan; 12(4):823-34. PubMed ID: 20066367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A-X excitation schemes.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Aug; 42(24):4922-36. PubMed ID: 12952340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Approach for Measurement of Composition and Temperature of N-Decane/Butanol Blends Using Two-Color Laser-Induced Fluorescence of Nile Red.
    Koegl M; Pahlevani M; Zigan L
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33050078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.