BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31617392)

  • 1. Formaldehyde removal in the air by six plant systems with or without rhizosphere microorganisms.
    Zhao S; Zhao Y; Liang H; Su Y
    Int J Phytoremediation; 2019; 21(13):1296-1304. PubMed ID: 31617392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum).
    Su Y; Liang Y
    J Hazard Mater; 2015 Jun; 291():120-8. PubMed ID: 25771217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency and mechanism of formaldehyde removal from air by two wild plants;
    Zhao S; Su Y; Liang H
    J Environ Health Sci Eng; 2019 Jun; 17(1):141-150. PubMed ID: 31321042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO
    Ullah H; Treesubsuntorn C; Thiravetyan P
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):538-546. PubMed ID: 32812163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment.
    Chaudhry Q; Blom-Zandstra M; Gupta S; Joner EJ
    Environ Sci Pollut Res Int; 2005; 12(1):34-48. PubMed ID: 15768739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment.
    Teiri H; Pourzamani H; Hajizadeh Y
    Chemosphere; 2018 Apr; 197():375-381. PubMed ID: 29407808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants.
    Liang H; Zhao S; Liu K; Su Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):193-201. PubMed ID: 30596331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.
    Rajtor M; Piotrowska-Seget Z
    Chemosphere; 2016 Nov; 162():105-16. PubMed ID: 27487095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.
    Liu R; Xiao N; Wei S; Zhao L; An J
    Sci Total Environ; 2014 Mar; 473-474():350-8. PubMed ID: 24374595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential.
    Agnello AC; Huguenot D; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2016 May; 23(9):9215-26. PubMed ID: 26838038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.
    Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of indoor formaldehyde by plants and plant material.
    Khalifa AA; Khan E; Akhtar MS
    Int J Phytoremediation; 2023; 25(4):493-504. PubMed ID: 35771032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species.
    Liu R; Dai Y; Sun L
    PLoS One; 2015; 10(3):e0120369. PubMed ID: 25822167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)].
    Fan SX; Li PJ; Gong ZQ; He N; Zhang LH; Ren WX; Verkhozina VA
    Huan Jing Ke Xue; 2007 Sep; 28(9):2080-4. PubMed ID: 17990561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area.
    Chen Y; Tang X; Cheema SA; Liu W; Shen C
    J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation.
    Cicatelli A; Guarino F; Baldan E; Castiglione S
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8866-8878. PubMed ID: 27822692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants.
    Weyens N; Thijs S; Popek R; Witters N; Przybysz A; Espenshade J; Gawronska H; Vangronsveld J; Gawronski SW
    Int J Mol Sci; 2015 Oct; 16(10):25576-604. PubMed ID: 26516837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil.
    Rani R; Kumar V; Usmani Z; Gupta P; Chandra A
    Chemosphere; 2019 Jun; 225():479-489. PubMed ID: 30897471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.
    Jones RK; Sun WH; Tang CS; Robert FM
    Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of plants and plant/microbial systems in the reduction of exposure.
    Shann JR
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):13-5. PubMed ID: 8565900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.