These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31617574)
1. Improving the catalytic efficiency of thermostable Geobacillus stearothermophilus xylanase XT6 by single-amino acid substitution. Azouz RAM; Hegazy UM; Said MM; Bassuiny RI; Salem AM; Fahmy AS J Biochem; 2020 Feb; 167(2):203-215. PubMed ID: 31617574 [TBL] [Abstract][Full Text] [Related]
2. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Zhang ZG; Yi ZL; Pei XQ; Wu ZL Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586 [TBL] [Abstract][Full Text] [Related]
3. Revealing of a novel xylose-binding site of Geobacillus stearothermophilus xylanase by directed evolution. Hegazy UM; El-Khonezy MI; Shokeer A; Abdel-Ghany SS; Bassuny RI; Barakat AZ; Salama WH; Azouz RAM; Fahmy AS J Biochem; 2019 Feb; 165(2):177-184. PubMed ID: 30407509 [TBL] [Abstract][Full Text] [Related]
4. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442 [TBL] [Abstract][Full Text] [Related]
5. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing. Teplitsky A; Mechaly A; Stojanoff V; Sainz G; Golan G; Feinberg H; Gilboa R; Reiland V; Zolotnitsky G; Shallom D; Thompson A; Shoham Y; Shoham G Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):836-48. PubMed ID: 15103129 [TBL] [Abstract][Full Text] [Related]
6. Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904. Li Q; Sun B; Li X; Xiong K; Xu Y; Yang R; Hou J; Teng C Int J Biol Macromol; 2018 Feb; 107(Pt B):1447-1455. PubMed ID: 29030195 [TBL] [Abstract][Full Text] [Related]
7. Identifying critical unrecognized sugar-protein interactions in GH10 xylanases from Geobacillus stearothermophilus using STD NMR. Balazs YS; Lisitsin E; Carmiel O; Shoham G; Shoham Y; Schmidt A FEBS J; 2013 Sep; 280(18):4652-65. PubMed ID: 23863045 [TBL] [Abstract][Full Text] [Related]
8. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution. Xu X; Liu MQ; Huo WK; Dai XJ Enzyme Microb Technol; 2016 May; 86():59-66. PubMed ID: 26992794 [TBL] [Abstract][Full Text] [Related]
9. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites. Yang J; Ma T; Shang-Guan F; Han Z Enzyme Microb Technol; 2020 Sep; 139():109579. PubMed ID: 32732029 [TBL] [Abstract][Full Text] [Related]
10. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme. Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. Boonyapakron K; Chitnumsub P; Kanokratana P; Champreda V J Biosci Bioeng; 2021 Jan; 131(1):13-19. PubMed ID: 33067124 [TBL] [Abstract][Full Text] [Related]
12. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis. Irfan M; Gonzalez CF; Raza S; Rafiq M; Hasan F; Khan S; Shah AA Enzyme Microb Technol; 2018 Apr; 111():38-47. PubMed ID: 29421035 [TBL] [Abstract][Full Text] [Related]
14. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348 [TBL] [Abstract][Full Text] [Related]
15. Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis. Fu LH; Jiang N; Li CX; Luo XM; Zhao S; Feng JX World J Microbiol Biotechnol; 2019 Oct; 35(11):171. PubMed ID: 31673786 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture. Mo XC; Chen CL; Pang H; Feng Y; Feng JX Appl Microbiol Biotechnol; 2010 Aug; 87(6):2137-46. PubMed ID: 20567817 [TBL] [Abstract][Full Text] [Related]
17. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Bibi Z; Qader SA; Aman A Extremophiles; 2015 Jul; 19(4):819-27. PubMed ID: 26001519 [TBL] [Abstract][Full Text] [Related]
18. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487 [TBL] [Abstract][Full Text] [Related]
19. Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. Lapidot A; Mechaly A; Shoham Y J Biotechnol; 1996 Nov; 51(3):259-64. PubMed ID: 8988650 [TBL] [Abstract][Full Text] [Related]
20. A new crystal form of XT6 enables a significant improvement of its diffraction quality and resolution. Bar M; Golan G; Nechama M; Zolotnitsky G; Shoham Y; Shoham G Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):545-9. PubMed ID: 14993688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]