These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31617701)

  • 21. Low-temperature approach to highly emissive copper indium sulfide colloidal nanocrystals and their bioimaging applications.
    Yu K; Ng P; Ouyang J; Zaman MB; Abulrob A; Baral TN; Fatehi D; Jakubek ZJ; Kingston D; Wu X; Liu X; Hebert C; Leek DM; Whitfield DM
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2870-80. PubMed ID: 23486927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes.
    Kuzuya T; Itoh K; Sumiyama K
    J Colloid Interface Sci; 2008 Mar; 319(2):565-71. PubMed ID: 18155227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magneto-Optical Properties of CuInS2 Nanocrystals.
    Rice WD; McDaniel H; Klimov VI; Crooker SA
    J Phys Chem Lett; 2014 Dec; 5(23):4105-9. PubMed ID: 26278940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective Cation Incorporation into Copper Sulfide Based Nanoheterostructures.
    Liu Y; Liu M; Yin D; Qiao L; Fu Z; Swihart MT
    ACS Nano; 2018 Aug; 12(8):7803-7811. PubMed ID: 29985593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared optically active Cu
    Wang Y; Xia Y
    J Mater Chem B; 2020 Sep; 8(35):7921-7930. PubMed ID: 32756672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.
    Lesnyak V; George C; Genovese A; Prato M; Casu A; Ayyappan S; Scarpellini A; Manna L
    ACS Nano; 2014 Aug; 8(8):8407-18. PubMed ID: 25050455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and hybridization of CuInS
    Chen B; Zheng W; Chun F; Xu X; Zhao Q; Wang F
    Chem Soc Rev; 2023 Nov; 52(23):8374-8409. PubMed ID: 37947021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Ternary and Quaternary Group III-Arsenide Colloidal Quantum Dots via High-Temperature Cation Exchange in Molten Salts: The Importance of Molten Salt Speciation.
    Ondry JC; Gupta A; Zhou Z; Chang JH; Talapin DV
    ACS Nano; 2024 Jan; 18(1):858-873. PubMed ID: 38108289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shape Evolution of Biconcave Djurleite Cu
    Liu Y; Liu M; Swihart MT
    J Am Chem Soc; 2017 Dec; 139(51):18598-18606. PubMed ID: 29200274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphine-Induced Phase Transition in Copper Sulfide Nanoparticles Prior to Initiation of a Cation Exchange Reaction.
    Steimle BC; Lord RW; Schaak RE
    J Am Chem Soc; 2020 Aug; 142(31):13345-13349. PubMed ID: 32700901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analogous self-assembly and crystallization: a chloride-directed orientated self-assembly of Cu nanoclusters and subsequent growth of Cu
    Liu J; Tian Y; Wu Z; Ai L; Liu Y; Cui J; Yu W; Zhang H; Yang B
    Nanoscale; 2017 Jul; 9(29):10335-10343. PubMed ID: 28702669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multipod Bi(Cu
    Kapuria N; Imtiaz S; Sankaran A; Geaney H; Kennedy T; Singh S; Ryan KM
    Nano Lett; 2022 Dec; 22(24):10120-10127. PubMed ID: 36472631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.
    Lesnyak V; Brescia R; Messina GC; Manna L
    J Am Chem Soc; 2015 Jul; 137(29):9315-23. PubMed ID: 26140622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic biomineralization of biocompatible CuInS
    Spangler LC; Chu R; Lu L; Kiely CJ; Berger BW; McIntosh S
    Nanoscale; 2017 Jul; 9(27):9340-9351. PubMed ID: 28661538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic 2D Cu
    Berends AC; van der Stam W; Akkerman QA; Meeldijk JD; van der Lit J; de Mello Donega C
    Chem Mater; 2018 Jun; 30(11):3836-3846. PubMed ID: 29910536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.
    Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z
    J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seeded Growth Combined with Cation Exchange for the Synthesis of Anisotropic Cu
    Xia C; Pedrazo-Tardajos A; Wang D; Meeldijk JD; Gerritsen HC; Bals S; de Mello Donega C
    Chem Mater; 2021 Jan; 33(1):102-116. PubMed ID: 33456135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.
    Wang X; Liu X; Zhu D; Swihart MT
    Nanoscale; 2014 Aug; 6(15):8852-7. PubMed ID: 24957012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cuâ‚‚Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange.
    Casu A; Genovese A; Manna L; Longo P; Buha J; Botton GA; Lazar S; Kahaly MU; Schwingenschloegl U; Prato M; Li H; Ghosh S; Palazon F; De Donato F; Mozo SL; Zuddas E; Falqui A
    ACS Nano; 2016 Feb; 10(2):2406-14. PubMed ID: 26816347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.