These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 31617929)
1. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. Phillips M; Marsden H; Jaffe W; Matin RN; Wali GN; Greenhalgh J; McGrath E; James R; Ladoyanni E; Bewley A; Argenziano G; Palamaras I JAMA Netw Open; 2019 Oct; 2(10):e1913436. PubMed ID: 31617929 [TBL] [Abstract][Full Text] [Related]
2. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Dinnes J; Deeks JJ; Chuchu N; Ferrante di Ruffano L; Matin RN; Thomson DR; Wong KY; Aldridge RB; Abbott R; Fawzy M; Bayliss SE; Grainge MJ; Takwoingi Y; Davenport C; Godfrey K; Walter FM; Williams HC; Cochrane Database Syst Rev; 2018 Dec; 12(12):CD011902. PubMed ID: 30521682 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: a prospective real-life clinical trial. Papachristou P; Söderholm M; Pallon J; Taloyan M; Polesie S; Paoli J; Anderson CD; Falk M Br J Dermatol; 2024 Jun; 191(1):125-133. PubMed ID: 38234043 [TBL] [Abstract][Full Text] [Related]
5. Teledermatology for diagnosing skin cancer in adults. Chuchu N; Dinnes J; Takwoingi Y; Matin RN; Bayliss SE; Davenport C; Moreau JF; Bassett O; Godfrey K; O'Sullivan C; Walter FM; Motley R; Deeks JJ; Williams HC; Cochrane Database Syst Rev; 2018 Dec; 12(12):CD013193. PubMed ID: 30521686 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of an image analyzing AI-based Digital Health Technology to identify Non-Melanoma Skin Cancer and other skin lesions: results of the DERM-003 study. Marsden H; Morgan C; Austin S; DeGiovanni C; Venzi M; Kemos P; Greenhalgh J; Mullarkey D; Palamaras I Front Med (Lausanne); 2023; 10():1288521. PubMed ID: 37869160 [TBL] [Abstract][Full Text] [Related]
7. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Chuchu N; Takwoingi Y; Dinnes J; Matin RN; Bassett O; Moreau JF; Bayliss SE; Davenport C; Godfrey K; O'Connell S; Jain A; Walter FM; Deeks JJ; Williams HC; Cochrane Database Syst Rev; 2018 Dec; 12(12):CD013192. PubMed ID: 30521685 [TBL] [Abstract][Full Text] [Related]
9. Performance of a computer-aided digital dermoscopic image analyzer for melanoma detection in 1,076 pigmented skin lesion biopsies. Del Rosario F; Farahi JM; Drendel J; Buntinx-Krieg T; Caravaglio J; Domozych R; Chapman S; Braunberger T; Dellavalle RP; Norris DA; Fathi R; Alkousakis T J Am Acad Dermatol; 2018 May; 78(5):927-934.e6. PubMed ID: 29678380 [TBL] [Abstract][Full Text] [Related]
10. Comparison of humans versus mobile phone-powered artificial intelligence for the diagnosis and management of pigmented skin cancer in secondary care: a multicentre, prospective, diagnostic, clinical trial. Menzies SW; Sinz C; Menzies M; Lo SN; Yolland W; Lingohr J; Razmara M; Tschandl P; Guitera P; Scolyer RA; Boltz F; Borik-Heil L; Herbert Chan H; Chromy D; Coker DJ; Collgros H; Eghtedari M; Corral Forteza M; Forward E; Gallo B; Geisler S; Gibson M; Hampel A; Ho G; Junez L; Kienzl P; Martin A; Moloney FJ; Regio Pereira A; Ressler JM; Richter S; Silic K; Silly T; Skoll M; Tittes J; Weber P; Weninger W; Weiss D; Woo-Sampson P; Zilberg C; Kittler H Lancet Digit Health; 2023 Oct; 5(10):e679-e691. PubMed ID: 37775188 [TBL] [Abstract][Full Text] [Related]
11. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions. Serban ED; Farnetani F; Pellacani G; Constantin MM Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304 [TBL] [Abstract][Full Text] [Related]
13. In vivo confocal microscopy: The role of comparative approach in patients with multiple atypical nevi. Longhitano S; Pampena R; Guida S; De Pace B; Ciardo S; Chester J; Longo C; Farnetani F; Pellacani G Exp Dermatol; 2020 Oct; 29(10):945-952. PubMed ID: 32748489 [TBL] [Abstract][Full Text] [Related]
14. Non-melanoma skin cancer diagnosis: a comparison between dermoscopic and smartphone images by unified visual and sonification deep learning algorithms. Dascalu A; Walker BN; Oron Y; David EO J Cancer Res Clin Oncol; 2022 Sep; 148(9):2497-2505. PubMed ID: 34546412 [TBL] [Abstract][Full Text] [Related]
15. Visual inspection and dermoscopy, alone or in combination, for diagnosing keratinocyte skin cancers in adults. Dinnes J; Deeks JJ; Chuchu N; Matin RN; Wong KY; Aldridge RB; Durack A; Gulati A; Chan SA; Johnston L; Bayliss SE; Leonardi-Bee J; Takwoingi Y; Davenport C; O'Sullivan C; Tehrani H; Williams HC; Cochrane Database Syst Rev; 2018 Dec; 12(12):CD011901. PubMed ID: 30521688 [TBL] [Abstract][Full Text] [Related]
16. Patient-led teledermatology for skin lesion triage: a service evaluation of the DyplensTM dermoscope. Abdul Gafoor SM; Nelson T; Woodcock E; Adityani B Clin Exp Dermatol; 2024 May; 49(6):612-615. PubMed ID: 38270263 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of smartphone applications in high-risk pigmented lesions. Ngoo A; Finnane A; McMeniman E; Tan JM; Janda M; Soyer HP Australas J Dermatol; 2018 Aug; 59(3):e175-e182. PubMed ID: 28240347 [TBL] [Abstract][Full Text] [Related]
18. Pre-operative diagnosis of pigmented skin lesions: in vivo dermoscopy performs better than dermoscopy on photographic images. Carli P; De Giorgi V; Argenziano G; Palli D; Giannotti B J Eur Acad Dermatol Venereol; 2002 Jul; 16(4):339-46. PubMed ID: 12224689 [TBL] [Abstract][Full Text] [Related]
19. Consistency of convolutional neural networks in dermoscopic melanoma recognition: A prospective real-world study about the pitfalls of augmented intelligence. Goessinger EV; Cerminara SE; Mueller AM; Gottfrois P; Huber S; Amaral M; Wenz F; Kostner L; Weiss L; Kunz M; Maul JT; Wespi S; Broman E; Kaufmann S; Patpanathapillai V; Treyer I; Navarini AA; Maul LV J Eur Acad Dermatol Venereol; 2024 May; 38(5):945-953. PubMed ID: 38158385 [TBL] [Abstract][Full Text] [Related]
20. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening? Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]